Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis

2020 ◽  
Vol 242 ◽  
pp. 106397 ◽  
Author(s):  
Zhou Li ◽  
Qingping Zhang ◽  
Wanrong Wei ◽  
Song Cui ◽  
Wei Tang ◽  
...  
2019 ◽  
Vol 205 (6) ◽  
pp. 635-646 ◽  
Author(s):  
Therese M. McBeath ◽  
Vadakattu V. S. R. Gupta ◽  
Rick S. Llewellyn ◽  
Sean D. Mason ◽  
Christopher W. Davoren ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhigang Wang ◽  
Bao-Luo Ma ◽  
Xiaofang Yu ◽  
Julin Gao ◽  
Jiying Sun ◽  
...  

AbstractEfficient use of nitrogen inputs for concurrent improvements in grain yield and nitrogen use efficiency (NUE) has been recognized as a viable strategy for sustainable agriculture development. Yet, there is little research on the possible physiological basis of maize hybrid heterosis for NUE and measurable traits that are corresponding to the NUE heterosis. A field study was conducted for two years to evaluate the heterosis for NUE and determine the relationship between NUE and its physiological components. Two commercial hybrids, ‘Xianyu335’ and ‘Zhengdan958’, and their parental inbred lines, were grown at 0 (0 N) and 150 kg N ha−1 (150 N), in a randomized complete block design with four replications each year. Compared to their parental lines, both hybrids displayed a significant heterosis, up to 466%, for NUE. N internal efficiency (NIE) accounted for 52% of the variation in heterosis for NUE, while there was generally negligible heterosis for nitrogen recovery efficiency (NRE). Heterosis for NIE and thereby for NUE in maize was ascribed to (i) an earlier establishment of pre-anthesis source for N accumulation, which phenotypically exhibited as a faster leaf appearance rate with higher maximum LAI and photosynthetic nitrogen use efficiency; (ii) a larger amount of N being remobilized from the vegetative tissues, especially from leaves, during the grain filling. Phenotypically, there was notably a rapid reduction in post-anthesis specific weights of leaf and stalk, but with maintained functionally stay-green ear leaves; and (iii) a higher productive efficiency per unit grain N, which was characterized by a reduced grain N concentration and enhanced sink strength.


2018 ◽  
Vol 10 (10) ◽  
pp. 3533 ◽  
Author(s):  
Yunqi Wang ◽  
Jiapeng Yang ◽  
Rui Zhang ◽  
Zhikuan Jia

The reported effects of nitrogen (N) fertilizer on wheat yield and nitrogen use efficiency (NUE) vary greatly, due to differences in climate, soil factors, and N management practices in different regions of China. We collected literature published during 1950–2017 that reported the yield and NUE for wheat in China, under N application and control treatments, and analyzed the data therein. A significant increase in yield was observed with N application, and varied with climate, soil factors, and N management practices in different regions. A larger increase in yield was observed under an average annual temperature of 13–15 °C, an average annual precipitation of >800 mm, respectively. Greater yield-increasing effects were observed in soil with a coarse soil texture, lower soil total N, available N, and a soil pH of ≤7 and >8, respectively. In Northwest China, the yield increase was greater under multiple coated urea applications after anthesis, while the higher NUE was observed under single coated urea application before anthesis. In North China, the yield and NUE were greater under multiple coated urea applications before anthesis. In South China, the yield and NUE were greater under multiple N applications. Consequently, to improve wheat yield and NUE, site-specific N management practices should be adopted.


2020 ◽  
Author(s):  
Xavier Albano ◽  
Ruben Sakrabani ◽  
Stephan Haefele

<p>The amount of bioavailable nitrogen is directly linked to anthropogenic activity (Kuypers, Marchant, & Kartal, 2018), particularly with the intensive application of synthetic nitrogen fertilisers. Although high nitrogen inputs are required to support the ever-increasing need for food production, nitrogen use efficiency is in many cases low, to the extent that even with extra nitrogen inputs over time, increases of food production are small and slow (Battye, Aneja, & Schlesinger, 2017).</p><p>It has been suggested that roughly 40% of reactive nitrogen is denitrified in the soil (Seitzinger, et al., 2006), and most of the reactive nitrogen that results from human activities is removed by denitrification, with consequent production of N<sub>2</sub> and N<sub>2</sub>O. However, even if most reactive N forms are removed by denitrification, this is an indicator that N use efficiency is not at optimum levels.</p><p>A study is being conducted in field and controlled conditions, that aims to understand denitrification and nitrogen use efficiency in a long-term experiment (running continuously since 2013) at Rothamsted Research. The experiment was designed to provide a clearer look at the effect of applications of organic amendments and/or inorganic fertilisers on nitrogen dynamics and crop yields in a conventional cereal-based cropping system.</p><p>Simultaneously, using yield data from the same trial, we aim to understand a) if the application of organic amendments leads to a reduction of the nitrogen threshold for optimum yields and, by using a modelling approach, b) if the eventual higher yields obtained with organic amendment application are due to the effect of the extra nutrients contained in the amendment or to some other effect caused by the amendments.</p><p>Soil and gas samples are being collected from a) different treatments of the field experiment (four different organic amendments: anaerobic digestate, compost, farmyard manure, straw and unamended control; and different nitrogen application rates; area of each plot: 54 m<sup>2</sup>) to assess nitrogen dynamics, and b) from soil columns (height 35 cm; width 25.5 cm)  placed in a controlled environment using soil collected from the same trial. Different measurements are being taken including leachate (measurements of mineralised nitrogen), microbiology and gas emissions (using a Picarro device that measures NH<sub>3</sub>, N<sub>2</sub>O, CO<sub>2</sub>, CH<sub>4</sub>, O<sub>2</sub>, H<sub>2</sub>O). Simultaneously, underground sensors are being used to understand moisture and temperature evolution in the soil column, while electrochemical nitrate sensors are being used to understand nitrate dynamics before and after application of organic amendments and inorganic fertilisers.</p><p>With this, we aim at having a better understanding on denitrification processes and nitrogen use efficiency issues that may occur when using a joint regime of organic amendments and inorganic fertilisers. The main objectives of the project are the validation of the effect of organic amendments in the Fosters long-term experiment and the quantification of nitrogen gas emissions with the application of organic amendments and nitrogen fertilisers.</p>


Author(s):  
Tingyao Cai ◽  
Yongliang Chen ◽  
Junxiao Pan ◽  
Youliang Ye ◽  
Qi Miao ◽  
...  

Euphytica ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Leandro Tonello Zuffo ◽  
Luiz Silva Luz ◽  
Vidomar Destro ◽  
Maria Eduarda Jardim Silva ◽  
Mateus Cupertino Rodrigues ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document