scholarly journals Compactness of conformally compact Einstein manifolds in dimension 4

2018 ◽  
Vol 340 ◽  
pp. 588-652 ◽  
Author(s):  
Sun-Yung A. Chang ◽  
Yuxin Ge
2008 ◽  
Vol 149 (6) ◽  
pp. 1755-1769 ◽  
Author(s):  
P. Yang ◽  
S. -Yu. A. Chang ◽  
J. Qing

Author(s):  
Yoshinobu Kamishima

AbstractWe study some types of qc-Einstein manifolds with zero qc-scalar curvature introduced by S. Ivanov and D. Vassilev. Secondly, we shall construct a family of quaternionic Hermitian metrics $$(g_a,\{J_\alpha \}_{\alpha =1}^3)$$ ( g a , { J α } α = 1 3 ) on the domain Y of the standard quaternion space $${\mathbb {H}}^n$$ H n one of which, say $$(g_a,J_1)$$ ( g a , J 1 ) is a Bochner flat Kähler metric. To do so, we deform conformally the standard quaternionic contact structure on the domain X of the quaternionic Heisenberg Lie group$${{\mathcal {M}}}$$ M to obtain quaternionic Hermitian metrics on the quotient Y of X by $${\mathbb {R}}^3$$ R 3 .


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
James Bonifacio ◽  
Kurt Hinterbichler

Abstract A compact Riemannian manifold is associated with geometric data given by the eigenvalues of various Laplacian operators on the manifold and the triple overlap integrals of the corresponding eigenmodes. This geometric data must satisfy certain consistency conditions that follow from associativity and the completeness of eigenmodes. We show that it is possible to obtain nontrivial bounds on the geometric data of closed Einstein manifolds by using semidefinite programming to study these consistency conditions, in analogy to the conformal bootstrap bounds on conformal field theories. These bootstrap bounds translate to constraints on the tree-level masses and cubic couplings of Kaluza-Klein modes in theories with compact extra dimensions. We show that in some cases the bounds are saturated by known manifolds.


Author(s):  
Kazuo Akutagawa

AbstractWe show a kind of Obata-type theorem on a compact Einstein n-manifold $$(W, \bar{g})$$ ( W , g ¯ ) with smooth boundary $$\partial W$$ ∂ W . Assume that the boundary $$\partial W$$ ∂ W is minimal in $$(W, \bar{g})$$ ( W , g ¯ ) . If $$(\partial W, \bar{g}|_{\partial W})$$ ( ∂ W , g ¯ | ∂ W ) is not conformally diffeomorphic to $$(S^{n-1}, g_S)$$ ( S n - 1 , g S ) , then for any Einstein metric $$\check{g} \in [\bar{g}]$$ g ˇ ∈ [ g ¯ ] with the minimal boundary condition, we have that, up to rescaling, $$\check{g} = \bar{g}$$ g ˇ = g ¯ . Here, $$g_S$$ g S and $$[\bar{g}]$$ [ g ¯ ] denote respectively the standard round metric on the $$(n-1)$$ ( n - 1 ) -sphere $$S^{n-1}$$ S n - 1 and the conformal class of $$\bar{g}$$ g ¯ . Moreover, if we assume that $$\partial W \subset (W, \bar{g})$$ ∂ W ⊂ ( W , g ¯ ) is totally geodesic, we also show a Gursky-Han type inequality for the relative Yamabe constant of $$(W, \partial W, [\bar{g}])$$ ( W , ∂ W , [ g ¯ ] ) .


Sign in / Sign up

Export Citation Format

Share Document