scholarly journals Using the Optimal Receiver Operating Characteristic Curve to Design a Predictive Genetic Test, Exemplified with Type 2 Diabetes

2008 ◽  
Vol 82 (3) ◽  
pp. 641-651 ◽  
Author(s):  
Qing Lu ◽  
Robert C. Elston
Circulation ◽  
2020 ◽  
Vol 142 (16) ◽  
pp. 1532-1544
Author(s):  
Yu Horiuchi ◽  
Nicholas Wettersten ◽  
Mitul P. Patel ◽  
Christian Mueller ◽  
Sean-Xavier Neath ◽  
...  

Background: The observed incidence of type 2 myocardial infarction (T2MI) is expected to increase with the implementation of increasingly sensitive cTn assays. However, it remains to be determined how to diagnose, risk-stratify, and treat patients with T2MI. We aimed to discriminate and risk-stratify T2MI using biomarkers. Methods: Patients presenting to the emergency department with chest pain, enrolled in the CHOPIN study (Copeptin Helps in the early detection Of Patients with acute myocardial INfarction), were retrospectively analyzed. Two cardiologists adjudicated type 1 MI (T1MI) and T2MI. The prognostic ability of several biomarkers alone or in combination to discriminate T2MI from T1MI was investigated using receiver operating characteristic curve analysis. The biomarkers analyzed were cTnI, copeptin, MR-proANP (midregional proatrial natriuretic peptide), CT-proET1 (C-terminal proendothelin-1), MR-proADM (midregional proadrenomedullin), and procalcitonin. The prognostic utility of these biomarkers for all-cause mortality and major adverse cardiovascular event (a composite of acute myocardial infarction, unstable angina pectoris, reinfarction, heart failure, and stroke) at 180-day follow-up was also investigated. Results: Among the 2071 patients, T1MI and T2MI were adjudicated in 94 and 176 patients, respectively. Patients with T1MI had higher levels of baseline cTnI, whereas those with T2MI had higher baseline levels of MR-proANP, CT-proET1, MR-proADM, and procalcitonin. The area under the receiver operating characteristic curve for the diagnosis of T2MI was higher for CT-proET1, MR-proADM, and MR-proANP (0.765, 0.750, and 0.733, respectively) than for cTnI (0.631). Combining all biomarkers resulted in a similar accuracy to a model using clinical variables and cTnI (0.854 versus 0.884, P =0.294). Addition of biomarkers to the clinical model yielded the highest area under the receiver operating characteristic curve (0.917). Other biomarkers, but not cTnI, were associated with mortality and major adverse cardiovascular event at 180 days among all patients, with no interaction between the diagnosis of T1MI or T2MI. Conclusions: Assessment of biomarkers reflecting pathophysiologic processes occurring with T2MI might help differentiate it from T1MI. All biomarkers measured, except cTnI, were significant predictors of prognosis, regardless of the type of myocardial infarction.


2019 ◽  
Vol 30 (7-8) ◽  
pp. 221-228
Author(s):  
Shahab Hajibandeh ◽  
Shahin Hajibandeh ◽  
Nicholas Hobbs ◽  
Jigar Shah ◽  
Matthew Harris ◽  
...  

Aims To investigate whether an intraperitoneal contamination index (ICI) derived from combined preoperative levels of C-reactive protein, lactate, neutrophils, lymphocytes and albumin could predict the extent of intraperitoneal contamination in patients with acute abdominal pathology. Methods Patients aged over 18 who underwent emergency laparotomy for acute abdominal pathology between January 2014 and October 2018 were randomly divided into primary and validation cohorts. The proposed intraperitoneal contamination index was calculated for each patient in each cohort. Receiver operating characteristic curve analysis was performed to determine discrimination of the index and cut-off values of preoperative intraperitoneal contamination index that could predict the extent of intraperitoneal contamination. Results Overall, 468 patients were included in this study; 234 in the primary cohort and 234 in the validation cohort. The analyses identified intraperitoneal contamination index of 24.77 and 24.32 as cut-off values for purulent contamination in the primary cohort (area under the curve (AUC): 0.73, P < 0.0001; sensitivity: 84%, specificity: 60%) and validation cohort (AUC: 0.83, P < 0.0001; sensitivity: 91%, specificity: 69%), respectively. Receiver operating characteristic curve analysis also identified intraperitoneal contamination index of 33.70 and 33.41 as cut-off values for feculent contamination in the primary cohort (AUC: 0.78, P < 0.0001; sensitivity: 87%, specificity: 64%) and validation cohort (AUC: 0.79, P < 0.0001; sensitivity: 86%, specificity: 73%), respectively. Conclusions As a predictive measure which is derived purely from biomarkers, intraperitoneal contamination index may be accurate enough to predict the extent of intraperitoneal contamination in patients with acute abdominal pathology and to facilitate decision-making together with clinical and radiological findings.


2021 ◽  
pp. 096228022199595
Author(s):  
Yalda Zarnegarnia ◽  
Shari Messinger

Receiver operating characteristic curves are widely used in medical research to illustrate biomarker performance in binary classification, particularly with respect to disease or health status. Study designs that include related subjects, such as siblings, usually have common environmental or genetic factors giving rise to correlated biomarker data. The design could be used to improve detection of biomarkers informative of increased risk, allowing initiation of treatment to stop or slow disease progression. Available methods for receiver operating characteristic construction do not take advantage of correlation inherent in this design to improve biomarker performance. This paper will briefly review some developed methods for receiver operating characteristic curve estimation in settings with correlated data from case–control designs and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using conditional receiver operating characteristic curves will be demonstrated. The proposed approach will use information about correlation among biomarker values, producing conditional receiver operating characteristic curves that evaluate the ability of a biomarker to discriminate between affected and unaffected subjects in a familial paired design.


2016 ◽  
Vol 25 (6) ◽  
pp. 2750-2766 ◽  
Author(s):  
Hélène Jacqmin-Gadda ◽  
Paul Blanche ◽  
Emilie Chary ◽  
Célia Touraine ◽  
Jean-François Dartigues

Semicompeting risks and interval censoring are frequent in medical studies, for instance when a disease may be diagnosed only at times of visit and disease onset is in competition with death. To evaluate the ability of markers to predict disease onset in this context, estimators of discrimination measures must account for these two issues. In recent years, methods for estimating the time-dependent receiver operating characteristic curve and the associated area under the ROC curve have been extended to account for right censored data and competing risks. In this paper, we show how an approximation allows to use the inverse probability of censoring weighting estimator for semicompeting events with interval censored data. Then, using an illness-death model, we propose two model-based estimators allowing to rigorously handle these issues. The first estimator is fully model based whereas the second one only uses the model to impute missing observations due to censoring. A simulation study shows that the bias for inverse probability of censoring weighting remains modest and may be less than the one of the two parametric estimators when the model is misspecified. We finally recommend the nonparametric inverse probability of censoring weighting estimator as main analysis and the imputation estimator based on the illness-death model as sensitivity analysis.


2012 ◽  
Vol 117 (6) ◽  
pp. 1300-1310 ◽  
Author(s):  
Damien Galanaud ◽  
Vincent Perlbarg ◽  
Rajiv Gupta ◽  
Robert D. Stevens ◽  
Paola Sanchez ◽  
...  

Background Existing methods to predict recovery after severe traumatic brain injury lack accuracy. The aim of this study is to determine the prognostic value of quantitative diffusion tensor imaging (DTI). Methods In a multicenter study, the authors prospectively enrolled 105 patients who remained comatose at least 7 days after traumatic brain injury. Patients underwent brain magnetic resonance imaging, including DTI in 20 preselected white matter tracts. Patients were evaluated at 1 yr with a modified Glasgow Outcome Scale. A composite DTI score was constructed for outcome prognostication on this training database and then validated on an independent database (n=38). DTI score was compared with the International Mission for Prognosis and Analysis of Clinical Trials Score. Results Using the DTI score for prediction of unfavorable outcome on the training database, the area under the receiver operating characteristic curve was 0.84 (95% CI: 0.75-0.91). The DTI score had a sensitivity of 64% and a specificity of 95% for the prediction of unfavorable outcome. On the validation-independent database, the area under the receiver operating characteristic curve was 0.80 (95% CI: 0.54-0.94). On the training database, reclassification methods showed significant improvement of classification accuracy (P &lt; 0.05) compared with the International Mission for Prognosis and Analysis of Clinical Trials score. Similar results were observed on the validation database. Conclusions White matter assessment with quantitative DTI increases the accuracy of long-term outcome prediction compared with the available clinical/radiographic prognostic score.


Sign in / Sign up

Export Citation Format

Share Document