Bayesian model comparison for rare-variant association studies

Author(s):  
Guhan Ram Venkataraman ◽  
Christopher DeBoever ◽  
Yosuke Tanigawa ◽  
Matthew Aguirre ◽  
Alexander G. Ioannidis ◽  
...  
2018 ◽  
Author(s):  
Christopher DeBoever ◽  
Matthew Aguirre ◽  
Yosuke Tanigawa ◽  
Chris C. A. Spencer ◽  
Timothy Poterba ◽  
...  

AbstractWhole genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery and inference that are not addressed by the traditional one variant-one phenotype association study. Here we introduce a model comparison approach we refer to as MRP for rare variant association studies that considers correlation, scale, and location of genetic effects across a group of genetic variants, phenotypes, and studies. We consider the use of summary statistic data to apply univariate and multivariate gene-based meta-analysis models for identifying rare variant associations with an emphasis on protective protein-truncating variants that can expedite drug discovery. Through simulation studies, we demonstrate that the proposed model comparison approach can improve ability to detect rare variant association signals. We also apply the model to two groups of phenotypes from the UK Biobank: 1) asthma diagnosis, eosinophil counts, forced expiratory volume, and forced vital capacity; and 2) glaucoma diagnosis, intra-ocular pressure, and corneal resistance factor. We are able to recover known associations such as the protective association between rs146597587 in IL33 and asthma. We also find evidence for novel protective associations between rare variants in ANGPTL7 and glaucoma. Overall, we show that the MRP model comparison approach is able to retain and improve upon useful features from widely-used meta-analysis approaches for rare variant association analyses and prioritize protective modifiers of disease risk.Author summaryDue to the continually decreasing cost of acquiring genetic data, we are now beginning to see large collections of individuals for which we have both genetic information and trait data such as disease status, physical measurements, biomarker levels, and more. These datasets offer new opportunities to find relationships between inherited genetic variation and disease. While it is known that there are relationships between different traits, typical genetic analyses only focus on analyzing one genetic variant and one phenotype at a time. Additionally, it is difficult to identify rare genetic variants that are associated with disease due to their scarcity, even among large sample sizes. In this work, we present a method for identifying associations between genetic variation and disease that considers multiple rare variants and phenotypes at the same time. By sharing information across rare variant and phenotypes, we improve our ability to identify rare variants associated with disease compared to considering a single rare variant and a single phenotype. The method can be used to identify candidate disease genes as well as genes that might represent attractive drug targets.


2014 ◽  
pp. 101-117
Author(s):  
Michael D. Lee ◽  
Eric-Jan Wagenmakers

2018 ◽  
Vol 265 ◽  
pp. 271-278 ◽  
Author(s):  
Tyler B. Grove ◽  
Beier Yao ◽  
Savanna A. Mueller ◽  
Merranda McLaughlin ◽  
Vicki L. Ellingrod ◽  
...  

2021 ◽  
Author(s):  
John K. Kruschke

In most applications of Bayesian model comparison or Bayesian hypothesis testing, the results are reported in terms of the Bayes factor only, not in terms of the posterior probabilities of the models. Posterior model probabilities are not reported because researchers are reluctant to declare prior model probabilities, which in turn stems from uncertainty in the prior. Fortunately, Bayesian formalisms are designed to embrace prior uncertainty, not ignore it. This article provides a novel derivation of the posterior distribution of model probability, and shows many examples. The posterior distribution is useful for making decisions taking into account the uncertainty of the posterior model probability. Benchmark Bayes factors are provided for a spectrum of priors on model probability. R code is posted at https://osf.io/36527/. This framework and tools will improve interpretation and usefulness of Bayes factors in all their applications.


2017 ◽  
Vol 70 ◽  
pp. 84-93 ◽  
Author(s):  
R. Wesley Henderson ◽  
Paul M. Goggans ◽  
Lei Cao

2018 ◽  
Author(s):  
Julia M. Haaf ◽  
Fayette Klaassen ◽  
Jeffrey Rouder

Most theories in the social sciences are verbal and provide ordinal-level predictions for data. For example, a theory might predict that performance is better in one condition than another, but not by how much. One way of gaining additional specificity is to posit many ordinal constraints that hold simultaneously. For example a theory might predict an effect in one condition, a larger effect in another, and none in a third. We show how common theoretical positions naturally lead to multiple ordinal constraints. To assess whether multiple ordinal constraints hold in data, we adopt a Bayesian model comparison approach. The result is an inferential system that is custom-tuned for the way social scientists conceptualize theory, and that is more intuitive and informative than current linear-model approaches.


Sign in / Sign up

Export Citation Format

Share Document