scholarly journals Bayesian model comparison for rare variant association studies of multiple phenotypes

2018 ◽  
Author(s):  
Christopher DeBoever ◽  
Matthew Aguirre ◽  
Yosuke Tanigawa ◽  
Chris C. A. Spencer ◽  
Timothy Poterba ◽  
...  

AbstractWhole genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery and inference that are not addressed by the traditional one variant-one phenotype association study. Here we introduce a model comparison approach we refer to as MRP for rare variant association studies that considers correlation, scale, and location of genetic effects across a group of genetic variants, phenotypes, and studies. We consider the use of summary statistic data to apply univariate and multivariate gene-based meta-analysis models for identifying rare variant associations with an emphasis on protective protein-truncating variants that can expedite drug discovery. Through simulation studies, we demonstrate that the proposed model comparison approach can improve ability to detect rare variant association signals. We also apply the model to two groups of phenotypes from the UK Biobank: 1) asthma diagnosis, eosinophil counts, forced expiratory volume, and forced vital capacity; and 2) glaucoma diagnosis, intra-ocular pressure, and corneal resistance factor. We are able to recover known associations such as the protective association between rs146597587 in IL33 and asthma. We also find evidence for novel protective associations between rare variants in ANGPTL7 and glaucoma. Overall, we show that the MRP model comparison approach is able to retain and improve upon useful features from widely-used meta-analysis approaches for rare variant association analyses and prioritize protective modifiers of disease risk.Author summaryDue to the continually decreasing cost of acquiring genetic data, we are now beginning to see large collections of individuals for which we have both genetic information and trait data such as disease status, physical measurements, biomarker levels, and more. These datasets offer new opportunities to find relationships between inherited genetic variation and disease. While it is known that there are relationships between different traits, typical genetic analyses only focus on analyzing one genetic variant and one phenotype at a time. Additionally, it is difficult to identify rare genetic variants that are associated with disease due to their scarcity, even among large sample sizes. In this work, we present a method for identifying associations between genetic variation and disease that considers multiple rare variants and phenotypes at the same time. By sharing information across rare variant and phenotypes, we improve our ability to identify rare variants associated with disease compared to considering a single rare variant and a single phenotype. The method can be used to identify candidate disease genes as well as genes that might represent attractive drug targets.

2019 ◽  
Vol 44 (1) ◽  
pp. 104-116
Author(s):  
Tianzhong Yang ◽  
Junghi Kim ◽  
Chong Wu ◽  
Yiding Ma ◽  
Peng Wei ◽  
...  

2020 ◽  
Author(s):  
Hana Susak ◽  
Laura Serra-Saurina ◽  
Raquel Rabionet Janssen ◽  
Laura Domènech ◽  
Mattia Bosio ◽  
...  

AbstractRare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 75% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the ‘Rare Variant Genome Wide Association Study’ (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.Data availability and implementationAll relevant data are within the manuscript and pipeline implementation on https://github.com/hanasusak/rvGWASAuthor summaryComplex diseases are characterized by being related to genetic factors and environmental factors such as air pollution, diet etc. that together define the susceptibility of each individual to develop a given disease. Much effort has been applied to advance the knowledge of the genetic bases of such diseases, specially in the discovery of frequent genetic variants in the population increasing disease risk. However, these variants usually explain a little part of the etiology of such diseases. Previous studies have shown that rare variants, i.e. variants present in less than 1% of the population, may explain the rest of the variability related to genetic aspects of the disease.Genome sequencing offers the opportunity to discover rare variants, but powerful statistical methods are needed to discriminate those variants that induce susceptibility to the disease. Here we have developed a powerful and flexible statistical approach for the detection of rare variants associated with a disease and we have integrated it into a computer tool that is easy and intuitive for the researchers and clinicians to use. We have shown that our approach outperformed other common statistical methods specially in a situation where these variants explain just a small part of the disease. The discovery of these rare variants will contribute to the knowledge of the molecular mechanism of complex diseases.


Author(s):  
Guhan Ram Venkataraman ◽  
Christopher DeBoever ◽  
Yosuke Tanigawa ◽  
Matthew Aguirre ◽  
Alexander G. Ioannidis ◽  
...  

2019 ◽  
Vol 101 ◽  
Author(s):  
Lifeng Liu ◽  
Pengfei Wang ◽  
Jingbo Meng ◽  
Lili Chen ◽  
Wensheng Zhu ◽  
...  

Abstract In recent years, there has been an increasing interest in detecting disease-related rare variants in sequencing studies. Numerous studies have shown that common variants can only explain a small proportion of the phenotypic variance for complex diseases. More and more evidence suggests that some of this missing heritability can be explained by rare variants. Considering the importance of rare variants, researchers have proposed a considerable number of methods for identifying the rare variants associated with complex diseases. Extensive research has been carried out on testing the association between rare variants and dichotomous, continuous or ordinal traits. So far, however, there has been little discussion about the case in which both genotypes and phenotypes are ordinal variables. This paper introduces a method based on the γ-statistic, called OV-RV, for examining disease-related rare variants when both genotypes and phenotypes are ordinal. At present, little is known about the asymptotic distribution of the γ-statistic when conducting association analyses for rare variants. One advantage of OV-RV is that it provides a robust estimation of the distribution of the γ-statistic by employing the permutation approach proposed by Fisher. We also perform extensive simulations to investigate the numerical performance of OV-RV under various model settings. The simulation results reveal that OV-RV is valid and efficient; namely, it controls the type I error approximately at the pre-specified significance level and achieves greater power at the same significance level. We also apply OV-RV for rare variant association studies of diastolic blood pressure.


2021 ◽  
Vol 17 (2) ◽  
pp. e1007784
Author(s):  
Hana Susak ◽  
Laura Serra-Saurina ◽  
German Demidov ◽  
Raquel Rabionet ◽  
Laura Domènech ◽  
...  

Rare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 70% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the ‘Rare Variant Genome Wide Association Study’ (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.


2017 ◽  
Vol 11 ◽  
pp. 117793221773509 ◽  
Author(s):  
Baishali Bandyopadhyay ◽  
Veda Chanda ◽  
Yupeng Wang

Thousands of genome-wide association studies (GWAS) have been conducted to identify the genetic variants associated with complex disorders. However, only a small proportion of phenotypic variances can be explained by the reported variants. Moreover, many GWAS failed to identify genetic variants associated with disorders displaying hereditary features. The “missing heritability” problem can be partly explained by rare variants. We simulated a causality scenario that gestational ages, a quantitative trait that can distinguish preterm (<37 weeks) and term births, were significantly correlated with the rare variant aggregations at 1000 single-nucleotide polymorphism loci. These 1000 simulated causal rare variants were embedded into randomly selected subsets of 9642 promoter regions from the 1000 Genomes Project genotypic data according to different proportions of causal rare variants within the embedded promoters. Through analysis of the correlations between rare variant aggregations and gestational ages, we found that the embedded promoters as a whole showed weaker genetic association when the proportion of causal rare variants decreased, and no individual embedded promoters showed genetic association when the proportion of causal rare variants was smaller than 0.4. Our analyses indicate that association signals can be greatly diluted when causal rare variants are dispersedly and sparsely distributed in the genome, accounting for an important source of missing heritability.


2019 ◽  
Vol 104 (9) ◽  
pp. 3835-3850 ◽  
Author(s):  
Matthew Dapas ◽  
Ryan Sisk ◽  
Richard S Legro ◽  
Margrit Urbanek ◽  
Andrea Dunaif ◽  
...  

AbstractContextPolycystic ovary syndrome (PCOS) is among the most common endocrine disorders of premenopausal women, affecting 5% to15% of this population depending on the diagnostic criteria applied. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is highly heritable, but only a small proportion of this heritability can be accounted for by the common genetic susceptibility variants identified to date.ObjectiveThe objective of this study was to test whether rare genetic variants contribute to PCOS pathogenesis.Design, Patients, and MethodsWe performed whole-genome sequencing on DNA from 261 individuals from 62 families with one or more daughters with PCOS. We tested for associations of rare variants with PCOS and its concomitant hormonal traits using a quantitative trait meta-analysis.ResultsWe found rare variants in DENND1A (P = 5.31 × 10−5, adjusted P = 0.039) that were significantly associated with reproductive and metabolic traits in PCOS families.ConclusionsCommon variants in DENND1A have previously been associated with PCOS diagnosis in genome-wide association studies. Subsequent studies indicated that DENND1A is an important regulator of human ovarian androgen biosynthesis. Our findings provide additional evidence that DENND1A plays a central role in PCOS and suggest that rare noncoding variants contribute to disease pathogenesis.


2021 ◽  
pp. 1-10
Author(s):  
Zoe Guan ◽  
Ronglai Shen ◽  
Colin B. Begg

<b><i>Background:</i></b> Many cancer types show considerable heritability, and extensive research has been done to identify germline susceptibility variants. Linkage studies have discovered many rare high-risk variants, and genome-wide association studies (GWAS) have discovered many common low-risk variants. However, it is believed that a considerable proportion of the heritability of cancer remains unexplained by known susceptibility variants. The “rare variant hypothesis” proposes that much of the missing heritability lies in rare variants that cannot reliably be detected by linkage analysis or GWAS. Until recently, high sequencing costs have precluded extensive surveys of rare variants, but technological advances have now made it possible to analyze rare variants on a much greater scale. <b><i>Objectives:</i></b> In this study, we investigated associations between rare variants and 14 cancer types. <b><i>Methods:</i></b> We ran association tests using whole-exome sequencing data from The Cancer Genome Atlas (TCGA) and validated the findings using data from the Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG). <b><i>Results:</i></b> We identified four significant associations in TCGA, only one of which was replicated in PCAWG (BRCA1 and ovarian cancer). <b><i>Conclusions:</i></b> Our results provide little evidence in favor of the rare variant hypothesis. Much larger sample sizes may be needed to detect undiscovered rare cancer variants.


Sign in / Sign up

Export Citation Format

Share Document