Comments on the paper “Conservation laws of the (2+1)–dimensional KP equation and Burgers equation with variable coefficients and cross terms” by Li-Hua Zhang

2014 ◽  
Vol 226 ◽  
pp. 1-2
Author(s):  
Nail H. Ibragimov
Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1987
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

The Frobenius KDV equation and the Frobenius KP equation are introduced, and the Frobenius Kompaneets equation, Frobenius Burgers equation and Frobenius Harry Dym equation are constructed by taking values in a commutative subalgebra Z2ε in the paper. The five equations are selected as examples to help us study the self-adjointness of Frobenius type equations, and we show that the first two equations are quasi self-adjoint and the last three equations are nonlinear self-adjointness. It follows that we give the symmetries of the Frobenius KDV and the Frobenius KP equation in order to construct the corresponding conservation laws.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 795-800 ◽  
Author(s):  
Chaudry Masood Khalique ◽  
Innocent Simbanefayi

AbstractIn this paper we study the modified equal width-Burgers equation, which describes long wave propagation in nonlinear media with dispersion and dissipation. Using the Lie symmetry method in conjunction with the (G'/G)− expansion method we construct its travelling wave solutions. Also, we determine the conservation laws by invoking the new conservation theorem due to Ibragimov. As a result we obtain energy and linear momentum conservation laws.


2018 ◽  
Vol 73 (8) ◽  
pp. 693-704 ◽  
Author(s):  
O.H. EL-Kalaawy ◽  
Engy A. Ahmed

AbstractIn this article, we investigate a (3+1)-dimensional Schamel–Zakharov–Kuznetsov–Burgers (SZKB) equation, which describes the nonlinear plasma-dust ion acoustic waves (DIAWs) in a magnetised dusty plasma. With the aid of the Kudryashov method and symbolic computation, a set of new exact solutions for the SZKB equation are derived. By introducing two special functions, a variational principle of the SZKB equation is obtained. Conservation laws of the SZKB equation are obtained by two different approaches: Lie point symmetry and the multiplier method. Thus, the conservation laws here can be useful in enhancing the understanding of nonlinear propagation of small amplitude electrostatic structures in the dense, dissipative DIAWs’ magnetoplasmas. The properties of the shock wave solutions structures are analysed numerically with the system parameters. In addition, the electric field of this solution is investigated. Finally, we will study the physical meanings of solutions.


Sign in / Sign up

Export Citation Format

Share Document