Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions

2014 ◽  
Vol 243 ◽  
pp. 132-137 ◽  
Author(s):  
Rekha Srivastava
Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 124 ◽  
Author(s):  
Nicolas Behr ◽  
Giuseppe Dattoli ◽  
Gérard Duchamp ◽  
Silvia Penson

Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover present a deep link between generalized normal-ordering techniques introduced by Gurappa and Panigrahi, two-variable Hermite polynomials and our integral-based series transforms. Notably, we thus calculate all K-tuple L-shifted lacunary exponential generating functions for a certain family of Sobolev-Jacobi (SJ) polynomials explicitly.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1811-1819 ◽  
Author(s):  
Shy-Der Lin ◽  
H.M. Srivastava ◽  
Mu-Ming Wong

Recently, Srivastava et al. [H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), 659-683] introduced and initiated the study of many interesting fundamental properties and characteristics of a certain pair of potentially useful families of the so-called generalized incomplete hypergeometric functions. Ever since then there have appeared many closely-related works dealing essentially with notable developments involving various classes of generalized hypergeometric functions and generalized hypergeometric polynomials, which are defined by means of the corresponding incomplete and other novel extensions of the familiar Pochhammer symbol. Here, in this sequel to some of these earlier works, we derive several general families of hypergeometric generating functions by applying Srivastava?s Theorem. We also indicate various (known or new) special cases and consequences of the results presented in this paper.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


2003 ◽  
Vol 2003 (60) ◽  
pp. 3827-3840 ◽  
Author(s):  
P. N. Rathie ◽  
P. Zörnig

We study the birthday problem and some possible extensions. We discuss the unimodality of the corresponding exact probability distribution and express the moments and generating functions by means of confluent hypergeometric functionsU(−;−;−)which are computable using the software Mathematica. The distribution is generalized in two possible directions, one of them consists in considering a random graph with a single attracting center. Possible applications are also indicated.


Sign in / Sign up

Export Citation Format

Share Document