Heat exchange enhancement of ferrofluid flow into rectangular channel in the presence of a magnetic field

2021 ◽  
Vol 391 ◽  
pp. 125634
Author(s):  
Zouhaier Mehrez ◽  
Afif El Cafsi
2013 ◽  
Vol 49 (1-2) ◽  
pp. 237-248
Author(s):  
A. V. Beznosov ◽  
O. O. Novozhilova ◽  
S. Yu. Savinov ◽  
M. V. Yarmonov ◽  
R. E. Alekseev

1978 ◽  
Vol 33 (7) ◽  
pp. 749-760 ◽  
Author(s):  
G. E. J. Eggermont ◽  
P. W. Hermans ◽  
L. J. F. Hermans ◽  
H. F. P. Knaap ◽  
J. J. M. Beenakker

In a rarefied polyatomic gas streaming through a rectangular channel, an external magnetic field produces a heat flux perpendicular to the flow direction. Experiments on this “viscom agnetic heat flux” have been performed for CO, N2, CH4 and HD at room temperature, with different orientations of the magnetic field. Such measurements enable one to separate the boundary layer contribution from the purely bulk contribution by means of the theory recently developed by Vestner. Very good agreement is found between the experimentally determined bulk contribution and the theoretical Burnett value for CO, N2 and CH4 , yet the behavior of HD is found to be anomalous.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Javad Sodagar-Abardeh ◽  
Payam Nasery ◽  
Ahmad Arabkoohsar ◽  
Mahmood Farzaneh-Gord

Abstract The forced and natural flows of fluid within an annulus caused by the rotation of cylinders and temperature differences of the inner and outer walls are observed in various engineering applications. In this research, the laminar flow regime and mixed convection inside a ring-shaped horizontal concentric and eccentric space for an incompressible fluid are studied in the existence of an axial magnetic field. The present work is the first effort to investigate the influence of a magnetic field on flow and combined-convection heat exchange characteristics within an annulus with a cold outer cylinder and an inner hot cylinder. Here, the properties of the flow and heat transfer characteristics are studied using the finite volume method. Numerical procedures are mainly investigated for recognizing the influence of Hartmann number (in the range of 0 ≤ Ha ≤ 100), as the representative of the magnetic force, on velocity components, Nusselt number, streamlines, and isothermal lines. One of the notable effects is that when Ha number increases, it will reduce the vorticity of the fluid and buoyancy forces. As a result, streamlines and isothermal lines can be seen more constant as regular concentric circles. A rise in Ha number decreases the range of local Nu number variation for both cylinders. The average Nu number for the outer and inner cylinders has different trends when Ha number increases. Taking concentric cylinders as an example, this parameter for the inner and the outer cylinders increases and decreases by about 1.2 and 1.6, respectively.


1987 ◽  
Vol 52 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Z. P. Shul'man ◽  
V. I. Kordonskii ◽  
S. R. Gorodkin ◽  
B. �. Kashevskii ◽  
I. V. Prokhorov

Sign in / Sign up

Export Citation Format

Share Document