A Galerkin Time quadrature element formulation for linear structural dynamics

2022 ◽  
Vol 413 ◽  
pp. 126609
Author(s):  
Junning Qin ◽  
Hongzhi Zhong
2010 ◽  
Vol 24 (13) ◽  
pp. 1307-1310 ◽  
Author(s):  
LONG CHEN ◽  
YIZHAO WU ◽  
JIAN XIA

A computational fluid dynamics (CFD) is coupled with a computational structural dynamics (CSD) to simulate the unsteady rotor flow with aeroelasticity effects. An unstructured upwind Navier-Stokes solver was developed for this simulation, with 2nd order time-accurate dual-time stepping method for temporal discretization and low Mach number preconditioning method. For turbulent flows, both the Spalart-Allmaras and Menter's SST model are available. Mesh deformation is achieved through a fast dynamic grid method called Delaunay graph map method for unsteady flow simulation. The rotor blades are modeled as Hodges & Dowell's nonlinear beams coupled flap-lag-torsion. The rotorcraft computational structural dynamics code employs the 15-dof beam finite element formulation for modeling. The structure code was validated by comparing the natural frequencies of a rotor model with UMARC. The flow and structure codes are coupled tightly with information exchange several times at every time step. A rotor blade model's unsteady flow field in the hover mode is simulated using the coupling method. Effect of blade elasticity with aerodynamic loads was compared with rigid blade.


An analysis is given of the characteristic flexural modes and frequencies of a linearly elastic free-free spheroid in an ideal fluid. The finite element method is used to represent the structural properties of a slender spheroid, employing a special element formulated for this purpose on the basis of Euler-Bernoulli beam theory. A consistent added mass matrix is derived from the exact solution of the infinite fluid potential problem, truncated at a suitable number of terms. A consistent added stiffness matrix is obtained for the buoyancy forces on a spheroid floating with its axis in a free surface, but other free surface effects (associated with wave generation) are assumed negligible. Solutions are computed for different aspect-ratio variable density spheroids vacuo , deeply submerged, and floating. The results indicate the possibility of considerable distortions in the lowest (‘rigid’) modes of slender floating bodies vibrating in a vertical plane, and illustrate the difficulty of defining three dimensional reduction factors for use with a simplified two dimensional theory. Derivation of the classical reduction factors for uniform density spheroids is given by way of comparison. The paper provides an illustration of use of a finite element formulation, in conjunction with consistent added mass and stiffness matrices, for a rational analysis of the structural dynamics of ships and other marine vehicles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junning Qin ◽  
Hongzhi Zhong

PurposeVarious time integration methods and time finite element methods have been developed to obtain the responses of structural dynamic problems, but the accuracy and computational efficiency of them are sometimes not satisfactory. The purpose of this paper is to present a more accurate and efficient formulation on the basis of the weak form quadrature element method to solve linear structural dynamic problems.Design/methodology/approachA variational principle for linear structural dynamics, which is inspired by Noble's work, is proposed to develop the weak form temporal quadrature element formulation. With Lobatto quadrature rule and the differential quadrature analog, a system of linear equations is obtained to solve the responses at sampling time points simultaneously. Computation for multi-elements can be carried out by a time-marching technique, using the end point results of the last element as the initial conditions for the next.FindingsThe weak form temporal quadrature element formulation is conditionally stable. The relation between the normalized length of element and the suggested number of integration points in one element is given by a simple formula. Results show that the present formulation is much more accurate than other time integration methods and its dissipative property is also illustrated.Originality/valueThe weak form temporal quadrature element formulation provides a choice with high accuracy and efficiency for solution of linear structural dynamic problems.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2018 ◽  
Vol 190 (02) ◽  
pp. 113-136
Author(s):  
Sergei A. Aseyev ◽  
A.S. Akhmanov ◽  
G.V. Girichev ◽  
Anatoly A. Ischenko ◽  
Igor V. Kochikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document