Structural dynamics of free molecules and condensed matter

2018 ◽  
Vol 190 (02) ◽  
pp. 113-136
Author(s):  
Sergei A. Aseyev ◽  
A.S. Akhmanov ◽  
G.V. Girichev ◽  
Anatoly A. Ischenko ◽  
Igor V. Kochikov ◽  
...  
2020 ◽  
Vol 63 (2) ◽  
pp. 103-122
Author(s):  
S A Aseyev ◽  
A S Akhmanov ◽  
G V Girichev ◽  
A A Ischenko ◽  
I V Kochikov ◽  
...  

Author(s):  
A. A. Ischenko ◽  
Y. I. Tarasov ◽  
L. Schäfer

To understand the dynamic features of molecular systems with a complex landscape of potential energy surfaces, it is necessary to study them in the associated 4D space-time continuum. The introduction of time in the diffraction methods and the development of coherent principles of the research process opened up new approaches for the study of the dynamics of wave packets, intermediates and transient states of the chemical reactions, short-lived compounds in the gaseous and condensed media. Time-resolved electron diffraction, the new method for the structural dynamic studies of free molecules, clusters and condensed matter, differs from the traditional method of electron diffraction both in the experimental part and in the theoretical approaches used in the interpretation of diffraction data. Here there is particularly pronounced the need of a corresponding theoretical basis for the processing of the electron diffraction data and the results of spectral investigations of the coherent dynamics in the field of intense ultrashort laser radiation. Such unified and integrated approach can be formulated using the adiabatic potential energy surfaces of the ground and excited states of the systems under study. The combination of state-of-the-art optical techniques and electron diffraction methods based on different physical phenomena, but complementing each other, opens up new possibilities of the structural studies at time sequences of ultrashort duration. It provides the required integration of the triad, "structure - dynamics - functions" in chemistry, biology and materials science.


2011 ◽  
Vol 65 (5) ◽  
pp. 308-312 ◽  
Author(s):  
Paul Beaud ◽  
Steven L. Johnson ◽  
Ekaterina Vorobev ◽  
Christopher J. Milne ◽  
Andrin Caviezel ◽  
...  

Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


Sign in / Sign up

Export Citation Format

Share Document