scholarly journals Usefulness of Left Atrial Volume Index to Predict Heart Failure Hospitalization and Mortality in Ambulatory Patients With Coronary Heart Disease and Comparison to Left Ventricular Ejection Fraction (from the Heart and Soul Study)

2008 ◽  
Vol 102 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Bryan Ristow ◽  
Sadia Ali ◽  
Mary A. Whooley ◽  
Nelson B. Schiller
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Natthaporn Prapan ◽  
Nithima Ratanasit ◽  
Khemajira Karaketklang

Abstract Background Significant tricuspid regurgitation (TR) can be found in patients with atrial fibrillation (AF). The results of previous studies are controversial about whether significant functional TR (FTR) in patients with AF leads to worse clinical outcomes. The aims of the study were to investigate the prevalence, predictors and prognosis of significant FTR in patients with AF with preserved left ventricular ejection fraction (LVEF). Methods The present study was a retrospective cohort study in patients with AF and preserved LVEF from May 2013 through January 2018. Significant FTR was defined as moderate to severe TR without structural abnormality of the tricuspid valve. Pulmonary hypertension (PH) was defined as pulmonary artery systolic pressure ≥ 50 mmHg or mean pulmonary artery pressure ≥ 25 mmHg determined by echocardiography. The adverse outcomes were defined as heart failure and death from any cause within 2 years of follow up. Results A total of 300 patients with AF (mean age 68.8 ± 10.8 years, 50% male) were included in the study. Paroxysmal and non-paroxysmal AF were reported in 34.7 and 65.3% of patients, respectively. Mean LVEF was 65.3 ± 6.3%. PH and significant FTR were observed in 31.3 and 21.7% of patients, respectively. Patients with significant FTR were significantly older, more female gender and non-paroxysmal AF, and had higher left atrial volume index and pulmonary artery pressure than those without. A total of 26 (8.7%) patients died and heart failure occurred in 39 (13.0%) patients. There was a statistically significant difference in the adverse outcomes between patients with significant and insignificant FTR (44.6% vs. 11.9%, p <  0.010). Multivariable analysis showed that factors associated with significant FTR were female gender, presence of PH and left atrial volume index (OR = 2.61, 1.87, and 1.04, respectively). The predictors of the adverse outcomes in patients with AF were significant FTR, presence of PH and high CHA2DS2-VASc score (OR = 5.23, 2.23 and 1.60, respectively). Conclusions Significant FTR was common in patients with AF, and independently associated with adverse outcomes. Thus, comprehensive echocardiographic assessment of FTR in patients with AF and preserved LVEF is fundamental in determining the optimal management.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Dharmendrakumar A Patel ◽  
Carl J Lavie ◽  
Richard V Milani ◽  
Hector O Ventura

Background: LV geometry predicts CV events but it is unknown whether left atrial volume index (LAVi) predicts mortality independent of LV geometry in patients with preserved LVEF. Methods: We evaluated 47,865 patients with preserved EF to determine the impact of LAVi and LV geometry on mortality during an average follow-up of 1.7±1.0 years. Results: Deceased patients (n=3,653) had significantly higher LAVi (35.3 ± 15.9 vs. 29.1 ± 11.9, p<0.0001) and abnormal LV geometry (60% vs. 41%, p<0.0001) than survivors (n=44,212). LAVi was an independent predictor of mortality in all four LV geometry groups [Hazard ratio: N= 1.007 (1.002–1.011), p=0.002; concentric remodeling= 1.008 (1.001–1.012), p<0.0001; eccentric hypertrophy= 1.012 (1.006 –1.018), p<0.0001; concentric hypertrophy=1.017 (1.012–1.022), p<0.0001; Figure ]. Comparison of models with and without LAVi for mortality prediction was significant suggesting increased mortality prediction by addition of LAVi to other independent predictors (Table ). Conclusion: LAVi is higher and LV geometric abnormalities are more prevalent in deceased patients with preserved systolic function and are independently associated with increased mortality. LAVi predicts mortality independent of LV geometry and has synergistic influence on all cause mortality prediction in large cohort of patients with preserved ejection fraction.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Hubert ◽  
V Le Rolle ◽  
E Galli ◽  
A Hernandez ◽  
E Donal

Abstract Aim This work aims to evaluate a novel semi-automatic tool for the assessment of volume-strain loops by transthoracic echocardiography (TTE). The proposed method was evaluated on a typical model of left ventricular (LV) diastolic dysfunction: the cardiac amyloidosis. Method 18 patients with proved cardiac amyloidosis were compared to 19 controls, from a local database. All TTE were performed using Vivid E9 or E95 ultrasound system. The complete method includes several steps: 1) extraction of LV strain full traces from apical 4 and 2 cavities views, 2) estimation of LV volume from these two traces by spline interpolations, 3) resampling of LV strain curves, determined for the same cardiac beat, (in apical 4-, 2- and 3- cavities views) as a function of pre-defined percentage increments of LV-volume and 4) calculation of the LV volume-strain loop area. (Figure 1, panel B) Results (Table 1): LVEF was similar between both groups whereas global longitudinal strain was significantly lower in amyloidosis group (−14.4 vs −20.5%; p<0.001). Amyloidosis group had a worse diastolic function with a greater left atrial volume index (51 vs 22ml/m2), a faster tricuspid regurgitation (2.7 vs 2.0 m/s), a greater E/e' ratio (17.3 vs 5.9) with a p<0.001 for all these indices. Simultaneously, the global area of volume-strain loop was significantly lower in amyloidosis group (36.5 vs 120.0%.mL). This area was better correlated with mean e' with r=0.734 (p<0.001) than all other indices (Figure 1, panel A). Table 1 Amyloidosis (N=18) Controls (N=19) p Global strain-volume loop area (%.mL) 36.5±21.3 120.0±54.2 <0.001 Global longitudinal strain (%) −14.4±3.8 −20.5±1.8 <0.001 Left ventricular ejection fraction (%) 62±7 65±5 0.08 Left atrial volume index (ml/m2) 51±22 22±5 <0.001 E/A 1.72±0.97 2.07±0.45 0.17 Mean e' 5.5±1.3 14.4±2.8 <0.001 Mean E/e' 17.3±5.4 5.9±1.4 <0.001 Tricuspid regurgitation velocity (m/s) 2.7±3.8 2.0±0.3 <0.001 Figure 1 Conclusion LV volume-strain loop area appears a very promising new tool to assess semi-automatically diastolic function. Future applications will concern the integration of LV volume-strain loop area as novel feature in machine-learning approach.


Sign in / Sign up

Export Citation Format

Share Document