Generalized fractional power series solutions for fractional differential equations

2020 ◽  
Vol 102 ◽  
pp. 106107 ◽  
Author(s):  
C.N. Angstmann ◽  
B.I. Henry
Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1070
Author(s):  
Pshtiwan Othman Mohammed ◽  
José António Tenreiro Machado ◽  
Juan L. G. Guirao ◽  
Ravi P. Agarwal

Nonlinear fractional differential equations reflect the true nature of physical and biological models with non-locality and memory effects. This paper considers nonlinear fractional differential equations with unknown analytical solutions. The Adomian decomposition and the fractional power series methods are adopted to approximate the solutions. The two approaches are illustrated and compared by means of four numerical examples.


2016 ◽  
Vol 12 (4) ◽  
pp. 6156-6159 ◽  
Author(s):  
Runqing Cui ◽  
Yue Hu

we use fractional power series method (FPSM) to solve some linear or nonlinear fractional differential equations . Compared to the other method, the FPSM is more simple, derect and effective.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Alaroud ◽  
Mohammed Al-Smadi ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din

This paper aims to present a novel optimization technique, the residual power series (RPS), for handling certain classes of fuzzy fractional differential equations of order 1<γ≤2 under strongly generalized differentiability. The proposed technique relies on generalized Taylor formula under Caputo sense aiming at extracting a supportive analytical solution in convergent series form. The RPS algorithm is significant and straightforward tool for creating a fractional power series solution without linearization, limitation on the problem’s nature, sort of classification, or perturbation. Some illustrative examples are provided to demonstrate the feasibility of the RPS scheme. The results obtained show that the scheme is simple and reliable and there is good agreement with exact solution.


2020 ◽  
Vol 23 (2) ◽  
pp. 356-377 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Moa’ath N. Oqielat ◽  
Zeyad Al-Zhour ◽  
Shaher Momani

AbstractIn this paper, our formulation generalizes the fractional power series to the matrix form and a new version of the matrix fractional Taylor’s series is also considered in terms of Caputo’s fractional derivative. Moreover, several significant results have been realignment to these generalizations. Finally, to demonstrate the capability and efficiency of our theoretical results, we present the solutions of three linear non-homogenous higher order (m − 1 < α ≤ m, m ∈ N) matrix fractional differential equations by using our new approach.


Fractals ◽  
2021 ◽  
Author(s):  
MUHAMMAD AKBAR ◽  
RASHID NAWAZ ◽  
SUMBAL AHSAN ◽  
KOTTAKKARAN SOOPPY NISAR ◽  
KAMAL SHAH ◽  
...  

Fractional differential and integral equations are focus of the researchers owing to their tremendous applications in different field of science and technology, such as physics, chemistry, mathematical biology, dynamical system and engineering. In this work, a power series approach called Residual Power Series Method (RPSM) is applied for the solution of fractional (non-integer) order integro-differential equations (FIDEs). The Caputo sense is used for calculating fractional derivatives. Comparison of the obtained solution is made with the Trigonometric Transform Method (TTM) and Optimal Homotopy Asymptotic Method (OHAM). There is no restrictive condition on the proposed solution. The presented technique is simple in applicability and easily computable.


2018 ◽  
Vol 23 (4) ◽  
pp. 665-685
Author(s):  
Zenonas Navickas ◽  
Tadas Telksnys ◽  
Inga Timofejeva ◽  
Romas Marcinkevičius ◽  
Minvydas Ragulskis

An operator-based approach for the construction of closed-form solutions to fractional differential equations is presented in this paper. The technique is based on the analysis of Caputo and Riemann-Liouville algebras of fractional power series. Explicit solutions to a class of linear fractional differential equations are obtained in terms of Mittag-Leffler and fractionally-integrated exponential functions in order to demonstrate the viability of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document