scholarly journals AN OPERATOR-BASED APPROACH FOR THE CONSTRUCTION OF CLOSED-FORM SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS

2018 ◽  
Vol 23 (4) ◽  
pp. 665-685
Author(s):  
Zenonas Navickas ◽  
Tadas Telksnys ◽  
Inga Timofejeva ◽  
Romas Marcinkevičius ◽  
Minvydas Ragulskis

An operator-based approach for the construction of closed-form solutions to fractional differential equations is presented in this paper. The technique is based on the analysis of Caputo and Riemann-Liouville algebras of fractional power series. Explicit solutions to a class of linear fractional differential equations are obtained in terms of Mittag-Leffler and fractionally-integrated exponential functions in order to demonstrate the viability of the proposed technique.

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1070
Author(s):  
Pshtiwan Othman Mohammed ◽  
José António Tenreiro Machado ◽  
Juan L. G. Guirao ◽  
Ravi P. Agarwal

Nonlinear fractional differential equations reflect the true nature of physical and biological models with non-locality and memory effects. This paper considers nonlinear fractional differential equations with unknown analytical solutions. The Adomian decomposition and the fractional power series methods are adopted to approximate the solutions. The two approaches are illustrated and compared by means of four numerical examples.


2020 ◽  
Vol 23 (2) ◽  
pp. 356-377 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Moa’ath N. Oqielat ◽  
Zeyad Al-Zhour ◽  
Shaher Momani

AbstractIn this paper, our formulation generalizes the fractional power series to the matrix form and a new version of the matrix fractional Taylor’s series is also considered in terms of Caputo’s fractional derivative. Moreover, several significant results have been realignment to these generalizations. Finally, to demonstrate the capability and efficiency of our theoretical results, we present the solutions of three linear non-homogenous higher order (m − 1 < α ≤ m, m ∈ N) matrix fractional differential equations by using our new approach.


2016 ◽  
Vol 12 (4) ◽  
pp. 6156-6159 ◽  
Author(s):  
Runqing Cui ◽  
Yue Hu

we use fractional power series method (FPSM) to solve some linear or nonlinear fractional differential equations . Compared to the other method, the FPSM is more simple, derect and effective.


Author(s):  
S. O. Ajibola ◽  
E. O. Oghre ◽  
A. G. Ariwayo ◽  
P. O. Olatunji

By fractional generalised Boussinesq equations we mean equations of the form \begin{equation} \Delta\equiv D_{t}^{2\alpha}-[\mathcal{N}(u)]_{xx}-u_{xxxx}=0, \: 0<\alpha\le1,\label{main}\nonumber \end{equation} where $\mathcal{N}(u)$ is a differentiable function and $\mathcal{N}_{uu}\ne0$ (to ensure nonlinearity). In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like equations of fractional order and we apply the Laplace homotopy analysis method (LHAM) for their rational and solitary wave solutions respectively. It is true that nonlinear fractional differential equations are often difficult to solve for their {\em exact} solutions and this single reason has prompted researchers over the years to come up with different methods and approach for their {\em analytic approximate} solutions. Most of these methods require huge computations which are sometimes complicated and a very good knowledge of computer aided softwares (CAS) are usually needed. To bridge this gap, we propose a method that requires no linearization, perturbation or any particularly restrictive assumption that can be easily used to solve strongly nonlinear fractional differential equations by hand and simple computer computations with a very quick run time. For the closed form solution, we set $\alpha =1$ for each of the solutions and our results coincides with those of others in the literature.


Author(s):  
Tadeusz Jankowski

AbstractUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives $D^{q}_{T}x$ and $D^{q}_{T}y$. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Alaroud ◽  
Mohammed Al-Smadi ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din

This paper aims to present a novel optimization technique, the residual power series (RPS), for handling certain classes of fuzzy fractional differential equations of order 1<γ≤2 under strongly generalized differentiability. The proposed technique relies on generalized Taylor formula under Caputo sense aiming at extracting a supportive analytical solution in convergent series form. The RPS algorithm is significant and straightforward tool for creating a fractional power series solution without linearization, limitation on the problem’s nature, sort of classification, or perturbation. Some illustrative examples are provided to demonstrate the feasibility of the RPS scheme. The results obtained show that the scheme is simple and reliable and there is good agreement with exact solution.


Sign in / Sign up

Export Citation Format

Share Document