fractional taylor’s series
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Ming-Jing Du

It is well known that the appearance of the delay in the fractional delay differential equation (FDDE) makes the convergence analysis very difficult. Dealing with the problem with the traditional reproducing kernel method (RKM) is very tricky. The feature of this paper is to gain a more credible approximate solution via fractional Taylor’s series (FTS). We use the FTS to deal with the delay for improving the accuracy of the approximate solutions. Compared with other methods, the five numerical examples demonstrate the accuracy and efficiency of the proposed method in this paper.


2020 ◽  
Vol 23 (2) ◽  
pp. 356-377 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Moa’ath N. Oqielat ◽  
Zeyad Al-Zhour ◽  
Shaher Momani

AbstractIn this paper, our formulation generalizes the fractional power series to the matrix form and a new version of the matrix fractional Taylor’s series is also considered in terms of Caputo’s fractional derivative. Moreover, several significant results have been realignment to these generalizations. Finally, to demonstrate the capability and efficiency of our theoretical results, we present the solutions of three linear non-homogenous higher order (m − 1 < α ≤ m, m ∈ N) matrix fractional differential equations by using our new approach.


2009 ◽  
Vol 23 (06) ◽  
pp. 791-805 ◽  
Author(s):  
GUY JUMARIE

A probability density of fractional (or fractal) order is defined by the probability increment pr{x < X ≤ x+dx} = pα(x)(dx)α, 0 < α < 1, and appears to be quite suitable to deal with random variables defined in a fractal space. Combining this definition with the fractional Taylor's series [Formula: see text] denotes the Mittag–Leffler function) provided by the modified Riemann–Liouville derivative, one can expand a probability calculus parallel to the standard one. This approach could be considered as a framework for the derivation of some space fractional partial differential diffusion equations in coarse-grained spaces. It is shown firstly that there is some relation between fractional probability and signed measure of probability, and secondly that when α = 1/2, there is some identity between this fractal probability and quantum probability. Shortly, a wavefunction could be thought of as a fractal probability density of order 1/2. One exhibits further relations with possibility theory and relative information. Lastly, one arrives at a new informational entropy based on the inverse of the Mittag–Leffler function.


Sign in / Sign up

Export Citation Format

Share Document