Collision-avoidance, aggregation and velocity-matching in a Cucker–Smale-type model

2022 ◽  
Vol 123 ◽  
pp. 107611
Author(s):  
Jianfei Cheng ◽  
Lining Ru ◽  
Xiao Wang ◽  
Yicheng Liu
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jianfei Cheng ◽  
Xiao Wang ◽  
Yicheng Liu

<p style='text-indent:20px;'>The collision-avoidance and flocking of the Cucker–Smale-type model with a discontinuous controller are studied. The controller considered in this paper provides a force between agents that switches between the attractive force and the repulsive force according to the movement tendency between agents. The results of collision-avoidance are closely related to the weight function <inline-formula><tex-math id="M1">\begin{document}$ f(r) = (r-d_0)^{-\theta } $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M2">\begin{document}$ \theta \ge 1 $\end{document}</tex-math></inline-formula>, collision will not appear in the system if agents' initial positions are different. For the case <inline-formula><tex-math id="M3">\begin{document}$ \theta \in [0,1) $\end{document}</tex-math></inline-formula> that not considered in previous work, the limits of initial configurations to guarantee collision-avoidance are given. Moreover, on the basis of collision-avoidance, we point out the impacts of <inline-formula><tex-math id="M4">\begin{document}$ \psi (r) = (1+r^2)^{-\beta } $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ f(r) $\end{document}</tex-math></inline-formula> on the flocking behaviour and give the decay rate of relative velocity. We also estimate the lower and upper bound of distance between agents. Finally, for the special case that agents moving on the 1-D space, we give sufficient conditions for the finite-time flocking.</p>


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Jinwei Yu ◽  
Jinchen Ji ◽  
Zhonghua Miao ◽  
Jin Zhou

SUMMARY This paper proposes a fully distributed continuous region-reaching controller for multi-robot systems which can effectively eliminate the chattering issues and the negative effects caused by discontinuities. The adaptive control gain technique is employed to solve the distributed region-reaching control problem. By performing Lyapunov function-based stability analysis, it is shown that all the robots can move cohesively within the desired region under the proposed distributed control algorithm. In addition, collision avoidance and velocity matching within the moving region can be guaranteed under properly designed control gains. Simulation examples are given to verify the capabilities of the proposed control method.


2014 ◽  
Vol 134 (9) ◽  
pp. 1269-1270 ◽  
Author(s):  
Hiroki Noma ◽  
Shun Tanabe ◽  
Takao Sato ◽  
Nozomu Araki ◽  
Yasuo Konishi

Author(s):  
Tomotaka WADA ◽  
Yuki NAKANISHI ◽  
Ryohta YAMAGUCHI ◽  
Kazushi FUJIMOTO ◽  
Hiromi OKADA

Sign in / Sign up

Export Citation Format

Share Document