High Chinese elm pollen counts in the fall in Atlanta, Georgia, 2009–2015

2016 ◽  
Vol 117 (5) ◽  
pp. 553-554
Author(s):  
Marissa Shams ◽  
Stanley Fineman
Keyword(s):  
Author(s):  
B. L. Redmond ◽  
Christopher F. Bob

The American Elm (Ulmus americana L.) has been plagued by Dutch Elm Disease (DED), a lethal disease caused by the fungus Ceratocystis ulmi (Buisman) c. Moreau. Since its initial appearance in North America around 1930, DED has wrought inexorable devastation on the American elm population, triggering both environmental and economic losses. In response to the havoc caused by the disease, many attempts have been made to hybridize U. americana with a few ornamentally less desirable, though highly DED resistant, Asian species (mainly the Siberian elm, Ulmus pumila L., and the Chinese elm Ulmus parvifolia Jacq.). The goal is to develop, through breeding efforts, hybrid progeny that display the ornamentally desirable characteristics of U. americana with the disease resistance of the Asian species. Unfortunately, however, all attempts to hybridize U. americana have been prevented by incompatibility. Only through a firm understanding of both compatibility and incompatibility will it be possible to circumvent the incompatibility and hence achieve hybridization.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Haruko Nishie ◽  
Mariko Kato ◽  
Shiori Kato ◽  
Hiroshi Odajima ◽  
Rumiko Shibata ◽  
...  

Background. With an increase in Japanese cedar and cypress (JC) pollinosis, the relationship between JC pollen and atopic dermatitis (AD) has been studied. Some reports suggest that JC pollen can be one exacerbating factor for AD, but there has been no report that discusses JC pollen counts relating to AD symptom flare although actual airborne JC pollen counts can widely fluctuate throughout the pollen season. Objective. The relationship between symptom flare of AD and airborne JC pollen counts was examined. Methods. We monitored JC pollen counts in real time and divided the counts into low and high level. We then analyzed self-scored “itch intensity” recorded by 14 AD patients through a self-scoring diary. Results. Among the 14 patients, 7 had significantly higher itch intensity while the pollen counts were high. Conclusion. Even during the pollen season, actual airborne pollen counts can widely fluctuate. Our study suggested that symptom flare of AD could be influenced by the actual pollen counts.


Author(s):  
J-P. Sutra ◽  
M-R. Ickovic ◽  
H. De Luca ◽  
G. Peltre ◽  
B. David
Keyword(s):  

2010 ◽  
Vol 105 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Victoria Jato ◽  
F. Javier Rodríguez-Rajo ◽  
Zulima González-Parrado ◽  
Belén Elvira-Rendueles ◽  
Stella Moreno-Grau ◽  
...  

2017 ◽  
Author(s):  
Matthew C. Wozniak ◽  
Allison Steiner

Abstract. We develop a prognostic model of Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in a regional climate model (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model: (1) using a taxa-specific land cover database, phenology and emission potential, and (2) a PFT-based land cover, phenology and emission potential. The resulting surface concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model, however we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.


Sign in / Sign up

Export Citation Format

Share Document