pollen season
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 107)

H-INDEX

40
(FIVE YEARS 4)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261327
Author(s):  
Minoru Tateno ◽  
Ayaka Enami ◽  
Koji Fujinami ◽  
Hisashi Ohta

Japanese cedar pollinosis is a major seasonal allergy in Japan, and Japanese cypress pollinosis is a growing concern because the cypress pollen season follows the cedar pollen season and cross-reactivity among allergens occurs between these closely related species. Allergens purified from pollen under unspecified collecting conditions can potentially heterogenous allergens profiles and batch to batch variability, and amino acid sequence variants in allergens possibly exist among trees. Polymorphisms have not been investigated for the cypress pollen major allergens, Cha o 1 and Cha o 2. Our aim was to examine the homogeneity of allergen amino acid sequences. DNA sequences of Cha o 1 and Cha o 2 from pollen collected from Chiba and Ibaraki prefectures and from needles of 47 plus trees located at seed orchards in Chiba Prefecture were examined by amplicon sequencing and amino acid substitutions were deduced. Sequence analysis of the pollen samples revealed that eight and seven residues of Cha o 2 were polymorphic, respectively. Thirteen residues in Cha o 2, including those residues identified in pollen, were deduced to be polymorphic for the plus trees. Cha o 2 expressed by the 47 plus trees included amino acid differences when compared with that of isoallergen Cha o 2.0101. No substitution was deduced in Cha o 1 for pollen taken from the two prefectures. One conservative amino acid substitution was deduced in Cha o 1 for the plus trees. Of the 47 plus trees examined, 38 were deduced to express only the isoallergen Cha o 1.0101 isoform, whereas eight trees were heterozygous and a single tree was homozygous for the non-synonymous mutation, which indicates relative uniformity of Cha o 1. Cha o 2 was found to be a heterogeneous allergen which suggests that studies using pollen from different trees may not give the same results.


2021 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Ioana Corina Bocsan ◽  
Ioana Adriana Muntean ◽  
Nicolae Miron ◽  
Irena Pintea ◽  
Carmen Teodora Dobrican ◽  
...  

Soluble intercellular adhesion molecule-1 (ICAM-1) and soluble vascular adhesion molecule-1 (VCAM-1) play important roles in allergic rhinitis (AR). Treatment with H1 antihistamines improves AR symptoms and in vitro reduces the levels of adhesion molecules. The aim of the study was to evaluate serum levels of ICAM-1 and VCAM-1 in patients with AR to grass pollen and their response to different H1 antihistamines. Material and methods: A total of 50 patients with grass pollen AR were clinically and biologically evaluated. ICAM-1 and VCAM-1 serum levels were evaluated during pollen season before and after treatment with levocetirizine and desloratadine through the ELISA method. Results: ICAM-1, VCAM-1, eosinophils, and total IgE were elevated in patients with AR, compared with healthy subjects. Both antihistamines improved specific symptoms of AR and increased patients’ quality of life during pollen season after one month of treatment. H1 antihistamines reduced VCAM-1, ICAM-1, and total IgE after one-month treatment but not significantly. Patients with increased baseline values tend to remain with increased values after one-month AH1 treatment. Conclusions: ICAM-1 and sVCAM-1 levels are higher in patients with grass pollen-induced AR than healthy controls during pollen exposure. Their serum levels tend to remain at high values during pollen season despite antihistaminic therapy.


Aerobiologia ◽  
2021 ◽  
Author(s):  
Katarzyna Dąbrowska-Zapart ◽  
Tadeusz Niedźwiedź

AbstractThe study's main objective was to specify the extent to which weather conditions were related to the course of birch pollen seasons in the years 1997–2020. The impact of atmospheric conditions on the daily concentrations of birch pollen grains, the Annual pollen integral (APIn), and the length of pollen seasons were studied. The dependency between each meteorological condition and various features of the birch pollen season was determined using Spearman’s rho correlation, the Kruskal–Wallis test, and cluster analysis with the k-means method. It has been shown that the duration of sunshine and average air temperature occurring within 14 days preceding the season has the most significant influence on the beginning of a birch pollen season. The value of daily birch pollen concentrations in Sosnowiec showed a statistically significant positive correlation with the duration of sunlight and the average and maximum wind speed. The daily concentration also depended on the synoptic situation: the mass airflow direction, the type of air mass inflow, and the type of weather front. The near-ground temperature influenced the APIn of birch pollen grains during the period of 14 days before the beginning of the season and the meteorological conditions occurring in the summer of the preceding year such as the maximum temperature, duration of sunlight, the maximum and average wind speed, and the relative air humidity. It was concluded that the length of birch pollen seasons decreased year by year.


2021 ◽  
Vol 16 ◽  
Author(s):  
Gennaro D'Amato ◽  
Isabella Annesi-Maesano ◽  
Marilyn Urrutia-Pereira ◽  
Stefano Del Giacco ◽  
Nelson A. Rosario Filho ◽  
...  

Thunderstorm-triggered asthma (TA) can be defined as the occurrence of acute asthma attacks immediately following a thunderstorm during pollen seasons. Outbreaks have occurred across the world during pollen season with the capacity to rapidly inundate a health care service, resulting in potentially catastrophic outcomes for allergicpatients. TA occurs when specific meteorological and aerobiological factors combine to affect predisposed atopic patients with IgE-mediated sentitization to pollen allergens. Thunderstorm outflows can concentrate aeroallergens, most commonly grass pollen but also other pollens such as Parietaria and moulds in TA, at ground level to release respirable allergenic particles after rupture by osmotic shock related to humidity and rainfall. Inhalation of high concentrations of these aeroallergens by sensitized individuals can induce early asthmatic responses which can be followed by a late inflammatory phase. There is evidence that, during pollen season, thunderstorms can induce allergic asthma outbreaks, sometimes also severe asthma crisis and sometimes deaths in patients suffering from pollen allergy. It has been observed that changes in the weather such as rain or humidity may induce hydratation of pollen grains during pollen seasons and sometimes also their fragmentation which generates atmospheric biological aerosols carrying allergens. Asthma attacks are induced for the high concentration at ground level of pollen grains which may release allergenic particles of respirable size after rupture by osmotic shock. In other words, it is a global health problem observed in several cities and areas of the world that can strike without sufficient warning, inducing sometimes severe clinical consequences also with deaths of asthma patients. Due to constant climate change, future TA events are likely to become more common, more disastrous and more unpredictable, as a consequence it is important to have deep knowledge on this topic to prevent asthma attacks. Other environmental factors, such as rapid changes in temperature and agricultural practices, also contribute to causing TA.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiangjie Guo ◽  
Yaqin Bai ◽  
Hualin Guo ◽  
Peng Wu ◽  
Hao Li ◽  
...  

Anaphylaxis has rapidly spread around the world in the last several decades. Environmental factors seem to play a major role, and epigenetic marks, especially DNA methylation, get more attention. We discussed several GEO opening data classifications with TOP 100 specific methylation region values (normalized M-values on line) by machine learning, which are remarkable to classify specific anaphylaxis after monoallergen exposure. Then, we sequenced the whole-genome DNA methylation of six people (3 wormwood monoallergen atopic rhinitis patients and 3 normal-immune people) during the pollen season and analyzed the difference of the single nucleotide and DNA region. The results’ divergences were obvious (the differential single nucleotides were mostly distributed in nongene regions but the differential DNA regions of GWAS, on the other hand), which may have caused most single nucleotides to be concealed in the regions’ sequences. Therefore, we suggest that we should conduct more “pragmatic” and directly find special single-nucleotide changes after exposure to atopic allergens instead of complex correlativity. It is possible to try to use DNA methylation marks to accurately diagnose anaphylaxis and form a machine learning classification based on the single methylated CpGs.


Alergoprofil ◽  
2021 ◽  
Author(s):  
Anna Rapiejko ◽  
Małgorzata Malkiewicz ◽  
Tomasz Wolski ◽  
Agata Konarska ◽  
Monika Ziemianin ◽  
...  

The study aims to monitor the alder pollen season in selected Polish cities: Bialystok, Cracow, Lublin, Olsztyn, Opole, Piotrkow Trybunalski, Sosnowiec, Szczecin, Warsaw, Wroclaw and Zielona Gora in 2021. Pollen concentrations were recorded by volumetric method using a Burkard-type sampler operating in a continuous volumetric mode. Alder pollen season, defined as the period with 98% of the annual total catch, started in 3rd decade of February in all monitoring sites. There was a marked variation in duration of the season between the sites. It lasted from 31 in Cracow to 54 days in Bialystok (38 days on average). The highest peak daily alder pollen concentrations were observed in Wroclaw (1879 grains/m3) on February 26th). The longest exposure to high concentrations of alder pollen, lasting 22–24 days, was detected in Zielona Gora, Piotrkow Trybunalski and Olsztyn. The alder pollen season in 2021, compared to the previous year, was longer, with higher average sum of daily concentrations over the season, higher maximum daily concentrations and longer exposure to high pollen concentrations at most monitoring sites.


2021 ◽  
Vol 2 ◽  
Author(s):  
Pia V. Ørby ◽  
Jakob H. Bønløkke ◽  
Bo M. Bibby ◽  
Peter Ravn ◽  
Ole Hertel ◽  
...  

Objectives: Allergic diseases are prevalent in the working population, and work-related airborne pollen exposure might be substantial, especially among outdoor workers, resulting in work-exacerbated effects. Seasonal exposure to pollen may induce a priming effect on the allergic bronchial response resulting in exaggerated effects at the end of the natural pollen season. This was previously observed among people with asthma but may also be of importance for persons with allergic rhinitis. In this study, we examined the effect of seasonal priming on bronchial responsiveness among young adults with allergic rhinitis and no or mild asthma. In addition, we explored the association between the baseline characteristics of participants and the severity of bronchoconstriction. Finally, we evaluated the application of a novel non-linear regression model to the log-dose-response curves.Material and methods: In a crossover design, 36 participants underwent specific inhalation challenges (SICs) with either grass or birch allergen outside and at the end of the pollen season. The differences in bronchial response were evaluated by comparing the dose-response profiles and PD20 estimates derived by applying a non-linear regression model.Results: The results showed that 12 of the 19 grass pollen-exposed participants had a lower PD20 at the end of the season compared with the outside season. For birch, this was true for nine out of the 17 participants. However, no statistically significant effects of the seasonal pollen exposure were found on neither the shape nor the magnitude of the modeled dose-response curves for either birch allergen, p = 0.77, or grass allergen, p = 0.45. The model depicted a good fit for the data. Among the baseline characteristics, only the size of the skin prick test for grass allergen was associated with PD20.Conclusion: This study does not support a priming effect of pollen exposure on the bronchial response from the natural seasonal exposure levels of grass or birch allergens among young adults with allergic rhinitis.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Xu Xu ◽  
Long Qin ◽  
Lei Ren ◽  
Chengshuo Wang ◽  
Yuan Zhang ◽  
...  

Abstract Background The symptoms of patients with respiratory disease are influenced by local environmental factors. The incidence of allergic rhinitis in grassland areas was significantly higher than that in non-grassland areas. We aimed to compare the profiles of chronic rhinitis patients obtained during the autumn pollen season in Baotou (grassland city) and Beijing (non-grassland city), China. Methods Questionnaire surveys and allergen testing were conducted on 1170 and 1232 patients with chronic rhinitis visiting the Second Affiliated Hospital of Baotou Medical College and Beijing Tongren Hospital, respectively, during the autumn pollen period. Information regarding medical history, severity of symptoms, and diagnosis and treatment was collected. Results More patients with moderate to severe chronic rhinitis and asthma (both, P < 0.001) were present in Baotou than in Beijing. Mugwort was the most abundant allergen in both regions, but the number of patients sensitized to outdoor allergens in Baotou was higher than that in Beijing (P < 0.001). Indoor allergens in Beijing represented a considerable proportion of allergens, especially dust mites (33.4%). For patients with allergic rhinitis, nasal congestion, nasal itching, and runny nose were more severe in Baotou than in Beijing (P < 0.001). In both Baotou and Beijing, allergy (P < 0.001 vs. P = 0.004) and combined asthma (P = 0.049 vs. P = 0.005) were common factors affecting the severity of the clinical symptoms chronic rhinitis. In Baotou, age (rs = 0.195, P < 0.001) and family allergy history (P = 0.010) were also associated with symptom severity. Although significantly more patients in Baotou received oral antihistamines, nasal corticosteroids, and surgical treatment than in Beijing (P < 0.001), the number of people receiving allergy immunotherapy in Baotou was lower (P = 0.004) and post-treatment symptom control was worse (P < 0.001) that that in Beijing. Conclusions During the pollen period, there were significant differences in the allergen spectrum between Baotou and Beijing. Allergy and combined asthma were common factors affecting the severity of clinical symptoms. Patients in Baotou presented with more severe clinical symptoms that were not satisfactorily managed due to the impact of pollen exposure, inconsistent access to care, and differing treatment modalities.


2021 ◽  
Vol 2 ◽  
Author(s):  
Estelle Levetin

Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.


Author(s):  
Franziska Kolek ◽  
Maria Plaza ◽  
Vivien Leier-Wirtz ◽  
Arne Friedmann ◽  
Claudia Traidl-Hoffmann ◽  
...  

Flowering and pollen seasons are sensitive to environmental variability and are considered climate change indicators. However, it has not been concluded to what extent flowering phenology is indeed reflected in airborne pollen season locally. The aim of this study was to investigate, for the commonly represented in temperate climates and with highly allergenic pollen Betula pendula Roth, the responsiveness of flowering to different environmental regimes and also to check for commensurate changes in the respective pollen seasons. The region of Augsburg, Bavaria, Germany, was initially screened for birch trees, which were geolocated at a radius of 25 km. Random trees across the city were then investigated during three full flowering years, 2015–2017. Flowering observations were made 3–7 times a week, from flower differentiation to flower desiccation, in a total of 43 plant individuals. Data were regressed against meteorological parameters and air pollutant levels in an attempt to identify the driving factors of flowering onset and offset. Flowering dates were compared with dates of the related airborne pollen seasons per taxon; airborne pollen monitoring took place daily using a Hirst-type volumetric sampler. The salient finding was that flowering occurred earlier during warmer years; it also started earlier at locations with higher urbanity, and peaked and ended earlier at sites with higher NO2 concentrations. Airborne pollen season of Betula spp. frequently did not coincide locally with the flowering period of Betula pendula: while flowering and pollen season were synchronized particularly in their onset, local flowering phenology alone could explain only 57.3% of the pollen season variability. This raises questions about the relationship between flowering times and airborne pollen seasons and on the rather underestimated role of the long-distance transport of pollen.


Sign in / Sign up

Export Citation Format

Share Document