scholarly journals N-Acetyl-D-glucosamine improves the intestinal development and nutrient absorption of weaned piglets via regulating the activity of intestinal stem cells

2021 ◽  
Author(s):  
Zhaobin Wang ◽  
Jie Hu ◽  
Xinyuan Yang ◽  
Lanmei Yin ◽  
Min Wang ◽  
...  
2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Zhaobin Wang ◽  
Jia Li ◽  
Yu Wang ◽  
Lei Wang ◽  
Yuebang Yin ◽  
...  

Abstract Vitamin A (VA) is an important nutrient for weaning piglets. It plays a significant role in the normal formation, development, and maintenance of epithelial cells. Previous studies have shown that VA supplements could improve the host’s intestinal barrier function. Therefore, we hypothesized that VA supplements can affect intestinal function in weaned piglets by regulating intestinal stem cells. Thirty-two 21-d-old weaned [(Yorkshire × Landrace) × Duroc] piglets with an average weight of 8.34 ± 0.13 kg were randomly divided into 4 treatment groups, with 1) 2 mg/kg (control), 2) 4 mg/kg, 3) 8 mg/kg, and 4) 16 mg/kg doses of VA, respectively. The experiment lasted for 14 d. Weaned piglets were given ad libitum access to food and water during the test. The ADG (linear, P = 0.020) and G:F (linear, P = 0.005) of the piglets were found to increase significantly from days 8 to 14. The Lgr5+ gene expression (P = 0.012) in the jejunum mucosa of the 16 mg/kg VA group was increased. The jejunum villus height (P = 0.027) and villi surface area (P = 0.035) were significantly increased in the 4 mg/kg VA treatment group. The crypt depth increased significantly in the 4 and 8 mg/kg VA treatment groups (quadratic, P = 0.043), and the ratios of villus height to crypt depth significantly increased in the 16 mg/kg VA group (quadratic, P = 0.015). The maltase (P = 0.032), sucrose (P = 0.041), and alkaline phosphatase activity (linear, P = 0.024) were significantly increased when further supplemented with 4 mg/kg VA. Slc2a2 mRNA abundance was significantly increased in the 2 mg/kg VA group (linear, P = 0.024). Moreover, the budding rates, buddings number per organoid, and Chromogranin A and Muc2 expression of piglet intestinal organoids were significantly reduced (P < 0.05) by VA and its metabolites (retinoic acid). Compared with the control group, the expression of Spp1 and Trop2 increased. These results indicated that VA may increase the stemness of intestinal stem cell in vitro. This study suggested that VA could affect growth performance and intestinal function by regulating intestinal stem cells in the jejunum of weaned piglets.


2020 ◽  
Author(s):  
Breanna Sheahan ◽  
Ally N. Freeman ◽  
Theresa M. Keeley ◽  
Linda C. Samuelson ◽  
Jatin Roper ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-741
Author(s):  
Matthew Ulgherait

Abstract Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways, but is due to altered cellular respiration via increased mitochondrial uncoupling. Lifespan extension of per mutants depends on mitochondrial uncoupling in the intestine. Moreover, up-regulated uncoupling protein UCP4C in intestinal stem cells and enteroblasts is sufficient to extend lifespan and preserve proliferative homeostasis in the gut with age. Consistent with inducing a metabolic state that prevents over-proliferation, mitochondrial uncoupling drugs also extend lifespan and inhibit intestinal stem cell overproliferation due to aging or even tumorigenesis. These results demonstrate that circadian-regulated intestinal mitochondrial uncoupling controls longevity in Drosophila and suggest a new potential anti-aging therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document