crypt depth
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 96)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Lang Zhang ◽  
Yongxing Hong ◽  
Yuying Liao ◽  
Kui Tian ◽  
Haodong Sun ◽  
...  

This study aimed to evaluate the effects of dietary Lasia spinosa Thw. (LST) powder supplementation on growth performance, blood metabolites, antioxidant status, intestinal morphology, and cecal microbiome in broiler chickens. A total of 400 1-day-old male Guangxi partridge broilers (initial body weight: 42.52 ± 0.06 g) were randomly allotted to 4 dietary treatments: LST0 group (a basal diet), LST1 group (a basal diet with 1% LST powder), LST2 group (a basal diet with 2% LST powder), LST4 group (a basal diet with 4% LST powder), 10 replicates for each treatment, and 10 broilers in each treatment group. Results indicated that the average daily feed intake of broilers during 22–42 days and the average daily gain of chickens during 1–42 days significantly increased by dietary supplementation of LST powder (p < 0.01), while the feed conversion ratio during the overall periods was decreased by dietary supplementation of LST powder (p < 0.01). Except for the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in liver (p > 0.05), the levels of SOD, catalase (CAT) and GSH-Px in serum, liver, and breast muscle were significantly increased in the LST supplemented groups (p < 0.05), while the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in serum, liver, and breast muscle were significantly decreased in the LST supplemented groups (p < 0.05). Furthermore, the levels of triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased by the addition of dietary LST powder (p < 0.01), while the levels of HDL-C, Ca, Fe, Mg, and P were linearly increased by the addition of dietary LST powder (p < 0.01). With respect to the gut morphometric, crypt depth was significantly decreased by LST supplementation (p < 0.05), while villus height and the ratio of villus height to crypt depth were notably increased by LST supplementation (p < 0.05). Sequencing of 16S ribosomal RNA (16S rRNA) from the cecal contents of broilers revealed that the composition of the chicken gut microbiota was altered by LST supplementation. The α-diversity of microbiota in broilers was increased (p < 0.05) in the LST1 group, but was decreased (p < 0.05) in the LST2 and LST4 groups compared with the LST0 group. The differential genera enriched in the LST1 group, such as Bacillus, Odoribacter, Sutterella, Anaerofilum, Peptococcus, were closely related to the increased growth performance, antioxidant status, intestinal morphology, Ca, Mg, and reduced blood lipid in the treated broilers.


2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Aydin Altop ◽  
Isa Coskun ◽  
Ayse Gul Filik ◽  
Huseyin Cayan ◽  
Ahmet Sahin ◽  
...  

ABSTRACT: Effects of dietary Agaricus bisporus mixture or stalk or cap on growth performance, carcass components and some meat quality parameters, mesophilic aerobic bacterial counts, and intestinal histomorphology in broiler chickens were investigated. Two hundred and forty one-day-old male Ross 308 broiler chickens were divided into 4 experimental groups with 4 replicates, each including 15 birds. Chickens were fed with basal diet (C), mushroom mixture (MM, 10 g stalk+10 g cap/kg diet), mushroom stalk (MS, 20 g/kg diet) and mushroom cap (MC, 20 g/kg diet). Feed conversion ratio (FCR) was improved (P < 0.01) by dietary MS while feed intake (FI) decreased (P < 0.01) in all treatment groups compared to control. However, body weight gain (BWG) was decreased (P < 0.01) by MC inclusion. Mushroom supplemented groups had higher (P < 0.05) mesophilic aerobic bacteria in the cecum. MS inclusion increased villus height to crypt depth ratio in the jejunum (P < 0.01) and villus height in the ileum (P < 0.01) and jejunum (P < 0.05). MC increased (P < 0.01) crypt depth in the jejunum. There were no statistical differences among groups for carcass components (P > 0.05). The L* values were decreased (P < 0.01) in thigh meat but increased (P < 0.01) in breast meat by mushroom inclusion. The a* values were decreased (P < 0.01) and b* values were increased (P < 0.05) in both thigh and breast meat with mushroom addition to diet. The obtained results indicated that A. bisporus stalk meal at an inclusion level of 20 g/kg of diet had favourable effects on growth performance with higher feed efficiency, improved intestinal morphology with higher villus height and increased meat quality of broiler chickens.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1528
Author(s):  
Ghulam Yaseen ◽  
Muhammad A. Sarfraz ◽  
Saima Naveed ◽  
Farooq Ahmad ◽  
Fehmeada Bibi ◽  
...  

The impacts of dietary levels of oxidized vegetable (sunflower) oil on growth performance, gut morphology, nutrients utilization, serum cholesterol and meat fatty acid profile were evaluated in Ross 308 straight-run (n = 192) day-old broilers. The broilers were arbitrarily distributed among four dietary treatments including; FVO: fresh vegetable oil (1 mEq kg−1), LOO: low oxidized (20 mEq kg−1), MOO: moderately oxidized (40 mEq kg−1), and HOO: highly oxidized vegetable oil (60 mEq kg−1) with 5% inclusion containing six replicates. Results revealed that the broilers consuming MOO and HOO based diets showed reduced (p = 0.05) feed intake, body weight gain and carcass weight accompanied by a poorer feed conversion ratio than those consuming FVO. Villus height, villus height to crypt depth ratio, ileal digestibility of crude protein (p = 0.041), crude fat (p = 0.032) and poly unsaturated fatty acids (p = 0.001) in thigh muscles were decreased, whereas crypt depth (p = 0.001), serum cholesterol levels (p = 0.023) and short chain fatty acids (p = 0.001) were increased (p < 0.001) by increasing dietary oxidation level. In conclusion, MOO and HOO exerted deleterious effects on growth, carcass weight, gut development and nutrients utilization. Low oxidized vegetable oil (20 mEq kg−1), however, with minimum negative effects can be used as a cost effective energy source in poultry diets.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Baoyang Xu ◽  
Wenxia Qin ◽  
Yunzheng Xu ◽  
Wenbo Yang ◽  
Yuwen Chen ◽  
...  

Antioxidant polyphenols from plants are potential dietary supplementation to alleviate early weaning-induced intestinal disorders in piglets. Recent evidences showed polyphenol quercetin could reshape gut microbiota when it functioned as anti-inflammation or antioxidation agents in rodent models. However, the effect of dietary quercetin supplementation on intestinal disorders and gut microbiota of weanling piglets, along with the role of gut microbiota in this effect, both remain unclear. Here, we determined the quercetin’s effect on attenuating diarrhea, intestinal damage, and redox imbalance, as well as the role of gut microbiota by transferring the quercetin-treated fecal microbiota to the recipient piglets. The results showed that dietary quercetin supplementation decreased piglets’ fecal scores improved intestinal damage by increasing tight junction protein occludin, villus height, and villus height/crypt depth ratio but decreased crypt depth and intestinal epithelial apoptosis (TUNEL staining). Quercetin also increased antioxidant capacity indices, including total antioxidant capacity, catalase, and glutathione/oxidized glutathione disulfide but decreased oxidative metabolite malondialdehyde in the jejunum tissue. Fecal microbiota transplantation (FMT) from quercetin-treated piglets had comparable effects on improving intestinal damage and antioxidative capacity than dietary quercetin supplementation. Further analysis of gut microbiota using 16S rDNA sequencing showed that dietary quercetin supplementation or FMT shifted the structure and increased the diversity of gut microbiota. Especially, anaerobic trait and carbohydrate metabolism functions of gut microbiota were enriched after dietary quercetin supplementation and FMT, which may owe to the increased antioxidative capacity of intestine. Quercetin increased the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum, Clostridium celatum, and Prevotella copri but decreased the relative abundances of Proteobacteria, Lactobacillus coleohominis, and Ruminococcus bromii. Besides, quercetin-shifted bacteria and carbohydrate metabolites short chain fatty acids were significantly related to the indices of antioxidant capacity and intestinal integrity. Overall, dietary quercetin supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant capacity and regulating gut microbial structure and metabolism in piglets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Teketay Wassie ◽  
Zhuang Lu ◽  
Xinyi Duan ◽  
Chunyan Xie ◽  
Kefyalew Gebeyew ◽  
...  

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P &lt; 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P &lt; 0.05). Besides, we observed significantly higher (P &lt; 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zehe Song ◽  
Kaihuan Xie ◽  
Yunlu Zhang ◽  
Qian Xie ◽  
Xi He ◽  
...  

The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1–28) and late (day 29–51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P &lt; 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P &lt; 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P &lt; 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chang Yin ◽  
Bing Xia ◽  
Shanlong Tang ◽  
Aizhi Cao ◽  
Lei Liu ◽  
...  

Bile acids are critical for lipid absorption, however, their new roles in maintaining or regulating systemic metabolism are irreplaceable. The negative impacts of heat stress (HS) on growth performance, lipid metabolism, and antioxidant status have been reported, but it remains unknown whether the bile acids (BA) composition of broiler chickens can be affected by HS. Therefore, this study aimed to investigate the modulating effects of the environment (HS) and whether dietary BA supplementation can benefit heat-stressed broiler chickens. A total of 216 Arbor Acres broilers were selected with a bodyweight approach average and treated with thermal neutral (TN), HS (32°C), or HS-BA (200 mg/kg BA supplementation) from 21 to 42 days. The results showed that an increase in average daily gain (P &lt; 0.05) while GSH-Px activities (P &lt; 0.05) in both serum and liver were restored to the normal range were observed in the HS-BA group. HS caused a drop in the primary BA (P = 0.084, 38.46%) and Tauro-conjugated BA (33.49%) in the ileum, meanwhile, the secondary BA in the liver and cecum were lower by 36.88 and 39.45% respectively. Notably, results were consistent that SBA levels were significantly increased in the serum (3-fold, P = 0.0003) and the ileum (24.89-fold, P &lt; 0.0001). Among them, TUDCA levels (P &lt; 0.01) were included. Besides, BA supplementation indeed increased significantly TUDCA (P = 0.0154) and THDCA (P = 0.0003) levels in the liver, while ileal TDCA (P = 0.0307), TLCA (P = 0.0453), HDCA (P = 0.0018), and THDCA (P = 0.0002) levels were also increased. Intestinal morphology of ileum was observed by hematoxylin and eosin (H&amp;E) staining, birds fed with BA supplementation reduced (P = 0.0431) crypt depth, and the ratio of villous height to crypt depth trended higher (P = 0.0539) under the heat exposure. Quantitative RT-PCR showed that dietary supplementation with BA resulted in upregulation of FXR (P = 0.0369), ASBT (P = 0.0154), and Keap-1 (P = 0.0104) while downregulation of iNOS (P = 0.0399) expression in ileum. Moreover, 16S rRNA gene sequencing analysis and relevance networks revealed that HS-derived changes in gut microbiota and BA metabolites of broilers may affect their resistance to HS. Thus, BA supplementation can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4219
Author(s):  
Na Liu ◽  
Likang Qin ◽  
Xiafen Lu ◽  
Yuxuan Zhao ◽  
Song Miao

The study aimed to explore the effects of fortified fermented rice-acid on the antioxidant capacity of mouse serum and the gut microbiota. Hair characteristics, body mass index, intestinal villus height, intestinal crypt depth, serum antioxidant capacity, and gut microbiota of mice were first measured and the correlation between the antioxidant capacity of mouse serum and the gut microbiota was then explored. The mice in the lactic acid bacteria group (L-group), the mixed bacteria group (LY-group), and the rice soup group (R-group) kept their weight well and had better digestion. The mice in the L-group had the better hair quality (dense), but the hair quality in the R-group and the yeast group (Y-group) was relatively poor (sparse). In addition, the inoculation of Lactobacillus paracasei H4-11 (L. paracasei H4-11) and Kluyveromyces marxianus L1-1 (K. marxianus L1-1) increased the villus height/crypt depth of the mice (3.043 ± 0.406) compared to the non-inoculation group (R-group) (2.258 ± 0.248). The inoculation of L. paracasei H4-11 and K. marxianus L1-1 in fermented rice-acid enhanced the blood antioxidant capacity of mouse serum (glutathione 29.503 ± 6.604 umol/L, malonaldehyde 0.687 ± 0.125 mmol/L, catalase 15.644 ± 4.618 U/mL, superoxide dismutase 2.292 ± 0.201 U/mL). In the gut microbiota of L-group and LY-group, beneficial microorganisms (Lactobacillus and Blautia) increased, but harmful microorganisms (Candidatus Arthromitus and Erysipelotrichales) decreased. L. paracasei H4-11 and K. marxianus L1-1 might have a certain synergistic effect on the improvement in antibacterial function since they reduced harmful microorganisms in the gut microbiota of mice. The study provides the basis for the development of fortified fermented rice-acid products for regulating the gut microbiota and improving the antioxidant capacity.


2021 ◽  
Author(s):  
Yu Tang ◽  
Xinyue Zhang ◽  
Yanan Wang ◽  
Yongpeng Guo ◽  
Peiqi Zhu ◽  
...  

Abstract Background: Subclinical necrotizing enteritis (SNE) is a common intestinal disease caused by Clostridium perfringens in broilers, which cause chronic intestinal damage, affect the digestion and absorption of nutrients, and reduce production performance. Ellagic acid (EA) has been reported to have antioxidant and anti-inflammatory properties in many aspects. This study was conducted to evaluate the effect and mechanism of EA in relieving subclinical necrotizing enteritis in broilers induced by C. perfringens. Results: C. perfringens challenge decreased body weight (BW), average daily gain (ADG); jejunal villi height/crypt depth (V/C); the activity of catalase (CAT), and the mRNA expression of zonula occludens 1 (ZO-1) in jejunum mucosa of broilers. While it increased feed conversion ratios (FCR); jejunal crypt depth (CD); activities of myeloperoxidase (MPO) and diamine oxidase (DAO), as well as concentrations of interleukin 6 (IL-6), C-reactive protein (CRP), and procalcitonin (PCT) in serum; activities of inducible nitric oxide synthase (iNOs) and lysozyme (LZM), the concentration of malondialdehyde (MDA), and the mRNA expression of claudin-2, TNF-α, IL-1β, TLR4, TLR2, NF-κB, JAK3, STAT6 and iNOs in jejunum mucosa of broilers. Dietary EA supplement relieved these adverse effects, and heightened jejunal villi height (VH); the concentration of D-xylose in plasma; activities of superoxide dismutase (SOD), and the mRNA expression of occludin in jejunum mucosa of broilers. The alpha diversity of cecal microbiota exhibited dietary EA supplement increased observed species and Shannon index. C. perfringens challenge increased the relative abundance of Firmicutes and decreased the relative abundance of Desulfobacterota. Similarly, EA increased relative abundance of Firmicutes. LEfSe analysis showed that C. perfringens challenge harmed the cecal microbiota of broiler chickens, dietary EA supplementation led to a small beneficial effect, while the simultaneous effect of them seems to stimulate the immune function of broilers and made broilers possess a better cecal microbiota. Conclusions: Dietary EA ameliorated C. perfringens-induced SNE in broilers via regulating jejunal inflammation signaling pathways TLR/NF-κB and JAK3/STAT6, relieving jejunal oxidative stress, and balancing cecal microbiota to inhibit intestinal barrier damage, prevent systemic inflammatory response, and improve nutrient absorption capacity, finally protect and enhance growth performance of broilers.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahsan Mustafa ◽  
Shiping Bai ◽  
Qiufeng Zeng ◽  
Xuemei Ding ◽  
Jianping Wang ◽  
...  

AbstractA total of 360-day-old broiler chicks were allocated into six groups in 2 (Coccidial challenge or not) × 3 (dietary treatments) factorial design. Three dietary treatments including: basic diet, basic diet plus organic acids (OAs) in drinking water, and basic diet plus OAs in the feed with and without coccidial challenge. The OAs in water or feed improved (P < 0.01) average body weight (ABW), average body weight gain (ABWG), and feed conversion ratio (FCR) as compared with the control diet during starter, grower, and whole experimental period. Coccidial challenge decreased BW, ABWG, and average feed intake (AFI), as well as resulted in poor FCR during the starter and whole experimental period (P < 0.05). Though there was no interaction between OAs supplementation and coccidial challenge, the OAs supplementation improved the overall performance with and without coccidial challenge birds on 21 d and 35 d. IgG was found higher (P = 0.03) in broilers fed OAs in feed without the coccidial challenge group. On 18 d, OAs supplementation in feed increased TNF-γ (P = 0.006), whereas the coccidial challenge decreases TNF-γ (P = 0.01) and IL-10 (P =  < .0001), and increases IgM (P = 0.03), IgG (P = 0.04) and IgA (P = 0.02). On 29 d, the coccidial challenge increases IgM and IgA. On 18 d, jejunal lesion score was found significantly higher in the coccidial challenged group as compared to OAs supplementation with coccidial challenged groups on 18 d (P < 0.0001) and 29 d (P = 0.03). Crypt depth was higher, and Villus-height to Crypt depth ratio was lower in the coccidial challenge group on 18 and 29 d. The Goblet cells were found higher in the non-coccidial challenge on 18 d. After 18 d, 16S rDNA gene sequence analysis of ileal chyme has shown that coccidial challenge decreases Lactobacillus_reuteri species as compared to the non-challenged group (P = 0.02). After 29, Cyanobacteria abundance reduced (P = 0.014) in the challenged group than the non-challenged group at the phylum level. At the genus level, Lactobacillus (P = 0.036) and unidentified Cyanobacteria (P = 0.01) were found higher in the non-challenged group than the coccidial challenge group. The results indicate that the OAs supplementation showed improved responses in a pattern similar to the non-challenged control group by neutralizing the negative effects of the coccidial challenge.


Sign in / Sign up

Export Citation Format

Share Document