scholarly journals Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses

2020 ◽  
Vol 182 ◽  
pp. 104927
Author(s):  
Sirin Theerawatanasirikul ◽  
Chih Jung Kuo ◽  
Nanthawan Phecharat ◽  
Jullada Chootip ◽  
Chalermpol Lekcharoensuk ◽  
...  
Author(s):  
Zhuo-Song Xie ◽  
Zi-Ying Zhou ◽  
Lian-Qi Sun ◽  
Hong Yi ◽  
Si-Tu Xue ◽  
...  

Aim: Given the importance of FOXM1 in the treatment of ovarian cancer, we aimed to identify an excellent specific inhibitor and examined its underlying therapeutic effect. Materials & methods: The binding statistics for FDI-6 with FOXM1 were calculated through computer-aided drug design (CADD). We selected XST-119 through virtual screening, performed surface plasmon resonance and in vitro cell antiproliferative activity analysis and evaluated its antitumor efficacy in a mouse model. Results: XST-119 had significantly higher affinity for FOXM1 and antiproliferative activity than FDI-6. XST-119 had a definite inhibitory activity in a xenograft mouse model. Conclusion: We identified XST-119, a FOXM1 inhibitor, with better efficacy for treatment of ovarian cancer. FOXM1 binding sites for small molecules are also highlighted, which may provide the foundation for further drug discovery.


Author(s):  
Ashley A. Adile ◽  
David Bakhshinyan ◽  
Chitra Venugopal ◽  
Sheila K. Singh

2016 ◽  
Vol 35 (9) ◽  
pp. 1899-1915 ◽  
Author(s):  
Ramin Ekhteiari Salmas ◽  
Ayhan Unlu ◽  
Muhammet Bektaş ◽  
Mine Yurtsever ◽  
Mert Mestanoglu ◽  
...  

Biochimie ◽  
2021 ◽  
Author(s):  
Simone Queiroz Pantaleão ◽  
Eric Allison Philot ◽  
Heberth de Paula ◽  
Mirela Inês de Sairre ◽  
Angelica Nakagawa Lima ◽  
...  

2010 ◽  
Vol 28 (8) ◽  
pp. 792-798 ◽  
Author(s):  
Khalid M. Khan ◽  
Abdul Wadood ◽  
Muhammad Ali ◽  
Zia-Ullah ◽  
Zaheer Ul-Haq ◽  
...  

Author(s):  
David Bacelar Costa Júnior ◽  
Janay Stefany Carneiro Araújo ◽  
Larissa de Mattos Oliveira ◽  
Flávio Simas Moreira Neri ◽  
Paulo Otávio Lourenço Moreira ◽  
...  

Author(s):  
Yash Gupta ◽  
Dawid Maciorowski ◽  
Samantha E. Zak ◽  
Krysten A. Jones ◽  
Rahul S. Kathayat ◽  
...  

Abstract The emergence of SARS/MERS drug-resistant SARS-CoV2 comes with higher rates of transmission and mortality. Like all coronaviruses, SARS-CoV-2 is a relatively large virus consisting of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral multiplication cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2’-O-MT. For virtual screening, the energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard(Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are approved by worldwide regulatory bodies. The screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP, and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. Herein we report the evaluation of in-vitro efficacy of selected hit drug molecules on SARS-CoV-2 inhibition. Among eight molecules included in our evaluation, we found inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), as the potent inhibitor of SARS-CoV-2 in-vitro. Further, in-silico predicted target validation through enzymatic assays confirmed 3CLpro to be the target. Therefore, our data support advancing BIM IX for clinical evaluation as a potential treatment for COVID-19. This is the first study that has showcased the possibility of using bisindolylmaleimide IX to treat COVID-19 through this pipeline.


2020 ◽  
Vol 477 (19) ◽  
pp. 3695-3707 ◽  
Author(s):  
Rupesh Agarwal ◽  
Barbara A. Bensing ◽  
Dehui Mi ◽  
Paige N. Vinson ◽  
Jerome Baudry ◽  
...  

Infective endocarditis (IE) is a cardiovascular disease often caused by bacteria of the viridans group of streptococci, which includes Streptococcus gordonii and Streptococcus sanguinis. Previous research has found that serine-rich repeat (SRR) proteins on the S. gordonii bacterial surface play a critical role in pathogenesis by facilitating bacterial attachment to sialylated glycans displayed on human platelets. Despite their important role in disease progression, there are currently no anti-adhesive drugs available on the market. Here, we performed structure-based virtual screening using an ensemble docking approach followed by consensus scoring to identify novel small molecule effectors against the sialoglycan binding domain of the SRR adhesin protein Hsa from the S. gordonii strain DL1. The screening successfully predicted nine compounds which were able to displace the native ligand (sialyl-T antigen) in an in vitro assay and bind competitively to Hsa. Furthermore, hierarchical clustering based on the MACCS fingerprints showed that eight of these small molecules do not share a common scaffold with the native ligand. This study indicates that SRR family of adhesin proteins can be inhibited by diverse small molecules and thus prevent the interaction of the protein with the sialoglycans. This opens new avenues for discovering potential drugs against IE.


2020 ◽  
Author(s):  
Yash Gupta ◽  
Dawid Maciorowski ◽  
Samantha E. Zak ◽  
Krysten A. Jones ◽  
Rahul S. Kathayat ◽  
...  

Abstract The emergence of SARS/MERS drug-resistant COVID-19 with high transmission and mortality has recently been declared a pandemic. Like all coronaviruses, SARS-CoV-2 is a relatively large virus consisting of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes. We targeted seven proteins with enzymatic activities known to be essential at different stages of the virus life cycle; PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2’-O-MT. For virtual screening, the energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard1. Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are approved by worldwide regulatory bodies. The screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP, and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. Top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. Herein we report the evaluation of in-vitro efficacy of selected hit drug molecules on SARS-CoV-2 virus inhibition. Among eight molecules included in our evaluation, we found the micromolar inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), as the most potent inhibitor of SARS-CoV-2 in-vitro. Further, in-silico predicted target validation through enzymatic assays confirmed its interaction with 3CLpro to be the target. Therefore, our data support advancing BIM IX for clinical evaluation as a potential treatment for COVID-19. This is the first study that has showcased the possibility of using bisindolylmaleimide IX to treat COVID-19 through this pipeline.


Sign in / Sign up

Export Citation Format

Share Document