multiplication cycle
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 67 (4) ◽  
pp. 143-162
Author(s):  
Mejdi Snoussi ◽  
Emira Noumi ◽  
Amor Mosbah ◽  
Alaeddine Redissi ◽  
Mohd Saeed ◽  
...  

Developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities is urgently needed to combat emerging human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since no available clinically antiviral drugs have been approved to eradicate COVID-19 as of the writing of this report, this study aimed to investigate bioactive short peptides from Allium subhirsutum L. (Hairy garlic) extracts identified through HR-LC/MS analysis that could potentially hinder the multiplication cycle of SARS-CoV-2 via molecular docking study. The obtained promising results showed that the peptides (Asn-Asn-Asn) possess the highest binding affinities of -8.4 kcal/mol against S protein, (His-Phe-Gln) of -9.8 kcal/mol and (Gln-His-Phe) of -9.7 kcal/mol towards hACE2, (Thr-Leu-Trp) of -10.3 kcal/mol and (Gln-Phe-Tyr) of -9.8 kcal/mol against furin. Additionally, the identified peptides show strong interactions with the targeted and pro-inflammatory ranging from -8.1 to -10.5 kcal/mol for NF−κB-inducing kinase (NIK), from -8.2 to -10 kcal/mol for phospholipase A2 (PLA2), from -8.0 to -10.7 kcal/mol for interleukin-1 receptor-associated kinase 4 (IRAK-4), and from -8.6 to -11.6 kcal/mol for the cyclooxygenase 2 (COX2) with Gln-Phe-Tyr model seems to be the most prominent. Results from pharmacophore, drug-likeness and ADMET prediction analyses clearly evidenced the usability of the peptides to be developed as an effective drug, beneficial for COVID-19 treatment.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 935
Author(s):  
Fernanda Gil de Souza ◽  
Jônatas Santos Abrahão ◽  
Rodrigo Araújo Lima Rodrigues

The nucleocytoplasmic large DNA viruses (NCLDV) possess unique characteristics that have drawn the attention of the scientific community, and they are now classified in the phylum Nucleocytoviricota. They are characterized by sharing many genes and have their own transcriptional apparatus, which provides certain independence from their host’s machinery. Thus, the presence of a robust transcriptional apparatus has raised much discussion about the evolutionary aspects of these viruses and their genomes. Understanding the transcriptional process in NCLDV would provide information regarding their evolutionary history and a better comprehension of the biology of these viruses and their interaction with hosts. In this work, we reviewed NCLDV transcription and performed a comparative functional analysis of the groups of genes expressed at different times of infection of representatives of six different viral families of giant viruses. With this analysis, it was possible to observe a temporal profile of their gene expression and set of genes activated in specific phases throughout the multiplication cycle as a common characteristic of this group. Due to the lack of information regarding the transcriptional regulation process of this group of pathogens, we sought to provide information that contributes to and opens up the field for transcriptional studies of other viruses belonging to Nucleocytoviricota.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 952
Author(s):  
Azman Embarc-Buh ◽  
Rosario Francisco-Velilla ◽  
Encarnacion Martinez-Salas

Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Harvie P Portugaliza ◽  
Shinya Miyazaki ◽  
Fiona JA Geurten ◽  
Christopher Pell ◽  
Anna Rosanas-Urgell ◽  
...  

Malaria transmission is dependent on the formation of gametocytes in the human blood. The sexual conversion rate, the proportion of asexual parasites that convert into gametocytes at each multiplication cycle, is variable and reflects the relative parasite investment between transmission and maintaining the infection. The impact of environmental factors such as drugs on sexual conversion rates is not well understood. We developed a robust assay using gametocyte-reporter parasite lines to accurately measure the impact of drugs on sexual conversion rates, independently from their gametocytocidal activity. We found that exposure to subcurative doses of the frontline antimalarial drug dihydroartemisinin (DHA) at the trophozoite stage resulted in a ~ fourfold increase in sexual conversion. In contrast, no increase was observed when ring stages were exposed or in cultures in which sexual conversion was stimulated by choline depletion. Our results reveal a complex relationship between antimalarial drugs and sexual conversion, with potential public health implications.


Author(s):  
Yash Gupta ◽  
Dawid Maciorowski ◽  
Samantha E. Zak ◽  
Krysten A. Jones ◽  
Rahul S. Kathayat ◽  
...  

Abstract The emergence of SARS/MERS drug-resistant SARS-CoV2 comes with higher rates of transmission and mortality. Like all coronaviruses, SARS-CoV-2 is a relatively large virus consisting of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral multiplication cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2’-O-MT. For virtual screening, the energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard(Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are approved by worldwide regulatory bodies. The screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP, and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. Herein we report the evaluation of in-vitro efficacy of selected hit drug molecules on SARS-CoV-2 inhibition. Among eight molecules included in our evaluation, we found inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), as the potent inhibitor of SARS-CoV-2 in-vitro. Further, in-silico predicted target validation through enzymatic assays confirmed 3CLpro to be the target. Therefore, our data support advancing BIM IX for clinical evaluation as a potential treatment for COVID-19. This is the first study that has showcased the possibility of using bisindolylmaleimide IX to treat COVID-19 through this pipeline.


2020 ◽  
Vol 8 (10) ◽  
pp. 1468
Author(s):  
Grigore Mihaescu ◽  
Mariana Carmen Chifiriuc ◽  
Ciprian Iliescu ◽  
Corneliu Ovidiu Vrancianu ◽  
Lia-Mara Ditu ◽  
...  

Coronaviruses are large, enveloped viruses with a single-stranded RNA genome, infecting both humans and a wide range of wild and domestic animals. SARS-CoV-2, the agent of the COVID-19 pandemic, has 80% sequence homology with SARS-CoV-1 and 96–98% homology with coronaviruses isolated from bats. The spread of infection is favored by prolonged exposure to high densities of aerosols indoors. Current studies have shown that SARS-CoV-2 is much more stable than other coronaviruses and viral respiratory pathogens. The severe forms of infection are associated with several risk factors, including advanced age, metabolic syndrome, diabetes, obesity, chronic inflammatory or autoimmune disease, and other preexisting infectious diseases, all having in common the pre-existence of a pro-inflammatory condition. Consequently, it is essential to understand the relationship between the inflammatory process and the specific immune response in SARS-CoV-2 infection. In this review, we present a general characterization of the SARS-CoV-2 virus (origin, sensitivity to chemical and physical factors, multiplication cycle, genetic variability), the molecular mechanisms of COVID-19 pathology, the host immune response and discuss how the inflammatory conditions associated with different diseases could increase the risk of COVID-19. Last, but not least, we briefly review the SARS-CoV-2 diagnostics, pharmacology, and future approaches toward vaccine development.


2020 ◽  
Vol 48 (18) ◽  
pp. 10428-10440
Author(s):  
Marion Declercq ◽  
Elise Biquand ◽  
Marwah Karim ◽  
Natalia Pietrosemoli ◽  
Yves Jacob ◽  
...  

Abstract Cellular exonucleases involved in the processes that regulate RNA stability and quality control have been shown to restrict or to promote the multiplication cycle of numerous RNA viruses. Influenza A viruses are major human pathogens that are responsible for seasonal epidemics, but the interplay between viral proteins and cellular exonucleases has never been specifically studied. Here, using a stringent interactomics screening strategy and an siRNA-silencing approach, we identified eight cellular factors among a set of 75 cellular proteins carrying exo(ribo)nuclease activities or involved in RNA decay processes that support influenza A virus multiplication. We show that the exoribonuclease ERI1 interacts with the PB2, PB1 and NP components of the viral ribonucleoproteins and is required for viral mRNA transcription. More specifically, we demonstrate that the protein-protein interaction is RNA dependent and that both the RNA binding and exonuclease activities of ERI1 are required to promote influenza A virus transcription. Finally, we provide evidence that during infection, the SLBP protein and histone mRNAs co-purify with vRNPs alongside ERI1, indicating that ERI1 is most probably recruited when it is present in the histone pre-mRNA processing complex in the nucleus.


2020 ◽  
Author(s):  
José Javier Conesa ◽  
Elena Sevilla ◽  
María C. Terrón ◽  
Luis Miguel González ◽  
Jeremy Gray ◽  
...  

ABSTRACTBabesia is an apicomplexan parasite of significance that causes the disease known as babesiosis in domestic and wild animals and in humans worldwide. Babesia infects vertebrate hosts and reproduces asexually by a form of binary fission within erythrocytes/red blood cells (RBCs), yielding a complex pleomorphic population of intraerythrocytic parasites. Seven of them, clearly visible in human RBCs infected with Babesia divergens, are considered the main forms and named single, double and quadruple trophozoites, paired and double paired-pyriforms, tetrad or Maltese Cross, and multiparasite stage. However, these main intraerythrocytic forms coexist with RBCs infected with transient parasite combinations of unclear origin and development. In fact, little is understood about how Babesia builds this complex population during its asexual life cycle. By combining the emerging technique cryo soft X-ray tomography and video microscopy, main and transitory parasites were characterized in a native whole cellular context and at nanometric resolution. As a result, the architecture and kinetic of the parasite population has been elucidated. Importantly, the process of multiplication by binary fission, involving budding, was visualized in live parasites for the first time, revealing that fundamental changes in cell shape and continuous rounds of multiplication occur as the parasites go through their asexual multiplication cycle. Based on these observations, a four-dimensional (4D) asexual life cycle model has been designed highlighting the origin of the tetrad, double paired-pyriform and multiparasite stages and the transient morphological forms that, surprisingly, intersperse in a chronological order between one main stage and the next along the cycle.IMPORTANCEBabesiosis is a disease caused by intraerythrocytic Babesia parasites, which possess many clinical features that are similar to those of malaria. This worldwide disease, is increasing in frequency and geographical range, and has a significant impact on human and animal health. Babesia divergens is one of the species responsible for human and cattle babesiosis causing death unless treated promptly. When B. divergens infects its vertebrate hosts it reproduces asexually within red blood cells. During its asexual life cycle, B. divergens builds a population of numerous intraerythrocytic (IE) parasites of difficult interpretation. This complex population is largely unexplored, and we have therefore combined three and four dimensional (3D and 4D) imaging techniques to elucidate the origin, architecture, and kinetic of IE parasites. Unveil the nature of these parasites have provided a vision of the B. divergens asexual cycle in unprecedented detail and a key step to develop control strategies against babesiosis


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Hayley Pearson ◽  
John Barr ◽  
Jamel Mankouri

Ion channels are a diverse class of transmembrane proteins that selectively allow ions across membranes, influencing a multitude of cellular processes. Modulation of these channels by viruses is emerging as an important host-pathogen interaction that regulates critical stages of the virus multiplication cycle including entry, replication and egress. Human respiratory syncytial virus (HRSV) causes severe respiratory tract infections globally and is one of the most lethal respiratory pathogens for infants in developing countries, with frequent development of bronchiolitis. Furthermore, it is the most significant cause of hospitalisation of infants in the UK. Evidence also indicates that severe childhood HRSV infection contributes towards the increased incidence of adult asthma. No HRSV vaccine is available, and currently the only treatment is immunoprophylaxis which is prohibitively expensive and only moderately effective; thus new treatment options are required. Utilising GFP-expressing HRSV in combination with an extensive panel of channel specific pharmacological inhibitors, we have identified an important role of cellular chloride (Cl-) channels during HRSV infection. Interestingly, pharmacological inhibition of specific Cl- channel families has ruled out involvement of the CFTR and instead highlighted a critical requirement for calcium-activated Cl- channels (CaCCs). Time of addition studies using CaCC blockers have indicated that these channels play a post-entry role during HRSV infection. Using genetic knockdown techniques we have isolated a single channel of interest and are now further investigating its role in facilitating HRSV multiplication, as well as assessing the importance of Cl- channels in replication cycles of other negative sense RNA viruses.


2020 ◽  
Author(s):  
Harvie P. Portugaliza ◽  
Shinya Miyazaki ◽  
Fiona J.A. Geurten ◽  
Christopher Pell ◽  
Anna Rosanas-Urgell ◽  
...  

ABSTRACTMalaria transmission is dependent on formation of gametocytes in the human blood. The sexual conversion rate, the proportion of asexual parasites that convert into gametocytes at each multiplication cycle, is variable and reflects the relative parasite investment between transmission and maintaining the infection. The impact of environmental factors such as drugs on sexual conversion rates is not well understood. We developed a robust assay using gametocyte-reporter parasite lines to accurately measure the impact of drugs on conversion rates, independently from their gametocytocidal activity. We found that exposure to subcurative doses of the frontline antimalarial drug dihydroartemisinin (DHA) at the trophozoite stage resulted in a ~4-fold increase in sexual conversion. In contrast, no increase was observed when ring stages were exposed or in cultures in which sexual conversion was stimulated by choline depletion. Our results reveal a complex relationship between antimalarial drugs and sexual conversion, with potential public health implications.


Sign in / Sign up

Export Citation Format

Share Document