A comparative study of Kalman filter and Linear Matrix Inequality based H infinity filter for SPND delay compensation

2016 ◽  
Vol 98 ◽  
pp. 19-25 ◽  
Author(s):  
P.K. Tamboli ◽  
Siddhartha P. Duttagupta ◽  
Kallol Roy
2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090421
Author(s):  
Linlin Xia ◽  
Jingyu Cong ◽  
Xun Xu ◽  
Yiping Gao ◽  
Shufeng Zhang

The issues of chassis dynamics-based navigation sensor fault and state estimation in land vehicles are specialized in this study. Owing to the essential attributes of robust theory-based observers, an H-infinity adaptive observer is proposed to implement the fault reconstructions of faulty sensors, offering a reference to vehicles for further favorable control decision-making. This observer fuses a linear matrix inequality convex optimization strategy, with the dynamics of land vehicles established mathematically, the consequent problems associated with augmented descriptor system state-space model, Lyapunov stability and linear matrix inequality convex optimization are discussed in detail. The numerical simulations on vehicular systems that suffered with single-existing deadlocking, gain scheduling, and constant deflection sensor fault are conducted. The results indicate, the fault channel outputs fairly reflect the variations of real faults under severe step-type fault input circumstances, so that the applicability of the fault observer against sensor failures is guaranteed. The proposed sensor fault construction idea is further extended to a loosely coupled inertial measurement units/global positioning system (GPS) illustration with GPS unavailable in its north velocity channel. After reconstructing the priori system state for “State one-step prediction” of Kalman filter, the compensated navigation parameters by state estimator exhibit consistent with the references as expected, the vehicle chassis dynamics-based sensor fault construction method, therefore, may be recognized as an effective measure to a class of integrated navigation systems experiencing some unknown sensor failures.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Choon Ki Ahn

A new robust training law, which is called an input/output-to-state stable training law (IOSSTL), is proposed for dynamic neural networks with external disturbance. Based on linear matrix inequality (LMI) formulation, the IOSSTL is presented to not only guarantee exponential stability but also reduce the effect of an external disturbance. It is shown that the IOSSTL can be obtained by solving the LMI, which can be easily facilitated by using some standard numerical packages. Numerical examples are presented to demonstrate the validity of the proposed IOSSTL.


2011 ◽  
Vol 422 ◽  
pp. 771-774
Author(s):  
Te Jen Su ◽  
Jui Chuan Cheng ◽  
Yu Jen Lin

This paper presents a color image noise removal technique that employs a cellular neural network (CNN) based on hybrid linear matrix inequality (LMI) and particle swarm optimization (PSO). For designing templates of CNN, the Lyapunov stability theorem is applied to derive the criterion for the uniqueness and global asymptotic stability of the CNN’s equilibrium point. The template design is characterized as a standard LMI problem, and the parameters of templates are optimized by PSO. The input templates are obtained by employing the CNN’s property of saturation nonlinearity, which can be used to eliminate noise from arbitrary corrupted images. The demonstrated examples are compared favorably with other available methods, which illustrate the better performance of the proposed LMI-PSO-CNN methodology.


Sign in / Sign up

Export Citation Format

Share Document