Investigation on effects of Fluid-Structure-Interaction (FSI) on the lubrication performances of water lubricated bearing in primary circuit loop system of nuclear power plant

2020 ◽  
Vol 141 ◽  
pp. 107355 ◽  
Author(s):  
Zhongliang Xie ◽  
Pan Song ◽  
Liang Hao ◽  
Nawei Shen ◽  
Weidong Zhu ◽  
...  
2014 ◽  
Vol 541-542 ◽  
pp. 916-921 ◽  
Author(s):  
Li Xu ◽  
Ru Chao Deng ◽  
Chu Xu ◽  
Di Zhang ◽  
Chen Xing Sheng

For evaluate the risk of civil marine nuclear power plant, through the searching related standards for ship, external environmental parameters that the nuclear ship should be suited was found. Based on the characteristics of power plant of civil nuclear-powered ship, the hierarchy system of primary loop system was established and corresponding indicator marking criteria were formulated for the risk assessment. The result shows that the Reactor Safety Injection System (RIS), the Reactor Boron and the Water Supply System (REA), the Control Rods and the Hull of Fuel Canning are the key risk factors in the primary loop system. Finally, the comprehensive evaluation was carried out for collision, stranding and swing of multi-degree of freedom, and put forward relative countermeasures to cope with the possible risks based on the comprehensive evaluation and combined with the literatures.


Author(s):  
Alain Tramec¸on ◽  
Jorg Kuhnert ◽  
Laurent Mouchette ◽  
Morgane Perrin

Constraints on the safety of nuclear power plant components have increased recently along with the necessity to extend the lifespan of existing plants. For example, the acceleration levels to be sustained by the plant equipment during an earthquake have been increased many folds by the safety regulation agencies. Industrial and economic requirements plead for a verification of unknown safety margins, by accurate and physics based models taking into account all non-linear effects (for example contacts and fluid structure interaction). These effects are only approximately represented by standard linear analysis tools. Virtual Performance Solution (VPS), developed by ESI Group, includes (among other capabilities) a structural finite element software for non-linear, high velocity, dynamic simulations (PAM-CRASH), as well as a coupled, mesh free CFD module, FPM (Finite Point Method), developed in partnership with Fraunhofer ITWM. This solution accurately predicts fluid structure interactions, taking into account non-linear structural effects (contacts, friction, damping…) as well as complex fluid influences.


Author(s):  
Thomas Wermelinger ◽  
Florian Bruckmüller ◽  
Benedikt Heinz

In the context of long-term operation or lifetime extension most regulatory bodies demand from utilities and operators of nuclear power plants to monitor and evaluate the fatigue of system, structures and components systematically. As does the Swiss Federal Nuclear Safety Inspectorate ENSI. The nuclear power plant Goesgen started its commercial operation in 1979 and will go into long-term operation in 2019. The increased demand for monitoring and evaluating fatigue due to the pending long-term operation led the Goesgen nuclear power plant to expand the scope of their surveillance and therefore to install AREVA’s fatigue monitoring system FAMOSi in the 2014 outage. The system consists of 39 measurement sections positioned at the primary circuit and the feed-water nozzles of the steam generators. The locations were chosen due to their sensitivity for fatigue. The installed FAMOSi system consists of a total of 173 thermocouples which were mounted in order to get the necessary input data for load evaluation. The advantage of FAMOSi is the possibility to obtain real data of transients near places with highest fatigue usage factors. Examples of steam generator feed-in during heating-up and cooling-down will be given. In addition, spray events before and after the installation of closed loop controlled spray valves will be compared. The measurements and the results of the load evaluation are not only of interest for internal use e.g. in regard to optimization of operation modes (e.g. load-following), but must also be reported to ENSI annually. In addition, by evaluation of stresses and determination of usage factors combined with an optimization of operation modes an early exchange of components can be avoided.


2013 ◽  
Vol 284-287 ◽  
pp. 1421-1425
Author(s):  
Wei Ting Lin ◽  
Meng Hsiu Hsieh ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

Following the nuclear power plant accident in Fukushima Japan, seismic capacity evaluation has become a crucial issue in combination building safety. Condensate storage tanks are designed to supplies water to the condensate transfer pumps, the control rod drive hydraulic system pumps, and the condenser makeup. A separate connection to the condensate storage tank is used to supply water for the high pressure coolant injection system, reactor core isolation cooling system, and core spray system pumps. A condensate storage tank is defined as a seismic class I structure, playing the important role of providing flow to the operational system and the required static head for the suction of the condensate transfer pumps and the normal supply pump. According to the latest nuclear safety requirements, soil structure interaction must be considered in all seismic analyses. This study aims to rebuild the computer model of condensate storage tanks in Taiwan using the SAP 2000 program in conjunction with the lumped mass stick model and to evaluate the soil structure interaction by employing the SASSI 2000 program. The differences between the results with the soil structure interaction and spring model are compared via natural frequency and response spectrum curves. This computer model enables engineers to rapidly evaluate the safety margin of condensate storage tank following the occurrence of earthquakes or tsunamis.


Sign in / Sign up

Export Citation Format

Share Document