Machine learning application to single channel design of molten salt reactor

2021 ◽  
Vol 161 ◽  
pp. 108409
Author(s):  
Mehmet Turkmen ◽  
Gwendolyn J.Y. Chee ◽  
Kathryn D. Huff
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


2021 ◽  
Vol 160 ◽  
pp. 108370
Author(s):  
Alexander M. Wheeler ◽  
Ondřej Chvála ◽  
Steven Skutnik

2021 ◽  
Vol 173 ◽  
pp. 109714
Author(s):  
Chen Wu ◽  
Chenggang Yu ◽  
Ao Zhang ◽  
Chunyan Zou ◽  
Yuwen Ma ◽  
...  

Author(s):  
Seungjun Ryu ◽  
Seunghyeok Back ◽  
Seongju Lee ◽  
Hyeon Seo ◽  
Chanki Park ◽  
...  

2021 ◽  
Vol 109 (5) ◽  
pp. 357-365
Author(s):  
Zhiqiang Cheng ◽  
Zhongqi Zhao ◽  
Junxia Geng ◽  
Xiaohe Wang ◽  
Jifeng Hu ◽  
...  

Abstract To develop the application of 95Nb as an indicator of redox potential for fuel salt in molten salt reactor (MSR), the specific activity of 95Nb in FLiBe salt and its deposition of 95Nb on Hastelloy C276 have been studied. Experimental results indicated that the amount of 95Nb deposited on Hastelloy C276 resulted from its chemical reduction exhibited a positive correlation with the decrease of 95Nb activity in FLiBe salt and the relative deposition coefficient of 95Nb to 103Ru appeared a well correlation with 95Nb activity in FLiBe salt. Both correlations implied that the measurement of 95Nb activity deposited on Hastelloy C276 specimen might provide a quantitative approach for monitoring the redox potential of fuel salt in MSR.


2022 ◽  
Vol 165 ◽  
pp. 108638
Author(s):  
Jianhui Wu ◽  
Jingen Chen ◽  
Chunyan Zou ◽  
Chenggang Yu ◽  
Xiangzhou Cai ◽  
...  

2022 ◽  
Vol 165 ◽  
pp. 108672
Author(s):  
Zack Taylor ◽  
Robert Salko ◽  
Aaron M. Graham ◽  
Benjamin S. Collins ◽  
G. Ivan Maldonado

Sign in / Sign up

Export Citation Format

Share Document