A perturbation-based acceleration for Monte Carlo – Thermal Hydraulics Picard iterations. Part II: Application to 3D PWR-based problems

2022 ◽  
Vol 166 ◽  
pp. 108713
Author(s):  
Stefano Terlizzi ◽  
Dan Kotlyar
2012 ◽  
Vol 250 ◽  
pp. 403-411 ◽  
Author(s):  
Miriam Vazquez ◽  
Haileyesus Tsige-Tamirat ◽  
Luca Ammirabile ◽  
Francisco Martin-Fuertes

2021 ◽  
Vol 247 ◽  
pp. 02034
Author(s):  
P. Mala ◽  
A. Pautz ◽  
H. Ferroukhi ◽  
A. Vasiliev

Currently, safety analyses mostly rely on codes which solve both the neutronics and the thermal-hydraulics with assembly-wise nodes resolution as multiphysics heterogeneous transport solvers are still too time and memory expensive. The pin-by-pin homogenized codes can be seen as a bridge between the heterogeneous codes and the traditional nodal assembly-wise calculations. In this work, the pin-by-pin simplified transport solver Tortin has been coupled with a sub-channel code COBRA-TF. The verification of the 3D solver of Tortin is presented at first, showing very good agreement in terms of axial and radial power profile with the Monte Carlo code SERPENT for a small minicore and with the state-of-the-art nodal code SIMULATE5 for a quarter core without feedback. Then the results of Tortin+COBRA-TF are compared with SIMULATE5 for one assembly problem with feedback. The axial profiles of power and moderator temperature show good agreement, while the fuel temperature differ by up to 40 K. This is caused mainly by different gap and fuel conductance parameters used in COBRA-TF and in SIMULATE5.


2021 ◽  
Vol 247 ◽  
pp. 07019 ◽  
Author(s):  
Margaux Faucher ◽  
Davide Mancusi ◽  
Andrea Zoia

In this work, we present the first dynamic calculations performed with the Monte Carlo neutron transport code TRIPOLI-4R with thermal-hydraulics feedback. For this purpose, the Monte Carlo code was extended for multi-physics capabilities and coupled to the thermal-hydraulics subchannel code SUBCHANFLOW. As a test case for the verification of transient simulation capabilities, a 3x3-assembly mini-core benchmark based on the TMI-1 reactor is considered with a pin-by-pin description. Two reactivity excursion scenarios initiated by control-rod movement are simulated starting from a critical state and compared to analogous simulations performed using the Serpent 2 Monte-Carlo code. The time evolution of the neutron power, fuel temperature, coolant temperature and coolant density are analysed to assess the multi-physics capabilities of TRIPOLI-4. The stabilizing e_ects of thermal-hydraulics on the neutron power appear to be well taken into account. The computational requirements for massively parallel calculations are also discussed.


2021 ◽  
Vol 247 ◽  
pp. 06013
Author(s):  
J.A. Blanco ◽  
P. Rubiolo ◽  
E. Dumonteil

Framework • A detailed and highly flexible numerical tool to study criticality accidents has been developed • The tool implements a Multi-Physics coupling using neutronics, thermal-hydraulics and thermal-mechanics models based on Open FOAM and SERPENT codes • Two neutronics models: Quasi-Static Monte Carlo and SPN Objective: In this work a system composed by a 2D square liquid fuel cavity filled with a fuel molten salt has been used to: • Investigate the performance of the tool’s thermal-hydraulics and neutronics solvers coupling numerical scheme • Evaluate possible strategies for the implementation of the Quasi-Static (QS) method with the Monte Carlo (MC) neutronics code • Compare the QS-MC approach precision and computational cost against the Simplified P3 (SP3) method


Sign in / Sign up

Export Citation Format

Share Document