Towards a Monte Carlo simulation of a pebble bed type high temperature gas cooled reactor using Geant4

2021 ◽  
pp. 108868
Author(s):  
A.C. Cilliers ◽  
S.H. Connell ◽  
J. Conradie ◽  
M.N.H. Cook ◽  
M. Laassiri ◽  
...  
2021 ◽  
Vol 32 (9) ◽  
Author(s):  
Ding She ◽  
Bing Xia ◽  
Jiong Guo ◽  
Chun-Lin Wei ◽  
Jian Zhang ◽  
...  

AbstractThe high-temperature reactor pebble-bed module (HTR-PM) is a modular high-temperature gas-cooled reactor demonstration power plant. Its first criticality experiment is scheduled for the latter half of 2021. Before performing the first criticality experiment, a prediction calculation was performed using PANGU code. This paper presents the calculation details for predicting the HTR-PM first criticality using PANGU, including the input model and parameters, numerical results, and uncertainty analysis. The accuracy of the PANGU code was demonstrated by comparing it with the high-fidelity Monte Carlo solution, using the same input configurations. It should be noted that keff can be significantly affected by uncertainties in nuclear data and certain input parameters, making the criticality calculation challenge. Finally, the PANGU is used to predict the critical loading height of the HTR-PM first criticality under design conditions, which will be evaluated in the upcoming experiment later this year.


Author(s):  
Linsen Li ◽  
Haomin Yuan ◽  
Kan Wang

This paper introduces a first-principle steady-state coupling methodology using the Monte Carlo Code RMC and the CFD code CFX which can be used for the analysis of small and medium reactors. The RMC code is used for neutronics calculation while CFX is used for Thermal-Hydraulics (T-H) calculation. A Pebble Bed-Advanced High Temperature Reactor (PB-AHTR) core is modeled using this method. The porous media is used in the CFX model to simulate the pebble bed structure in PB-AHTR. This research concludes that the steady-state coupled calculation using RMC and CFX is feasible and can obtain stable results within a few iterations.


1987 ◽  
Vol 97 (1) ◽  
pp. 72-88 ◽  
Author(s):  
F. Schürrer ◽  
W. Ninaus ◽  
K. Oswald ◽  
R. Rabitsch ◽  
Hj. Müller ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 159-176 ◽  
Author(s):  
Shengyao Jiang ◽  
Jiyuan Tu ◽  
Xingtuan Yang ◽  
Nan Gui

2018 ◽  
Vol 33 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Xiang-wen Zhou ◽  
Yang Yang ◽  
Jing Song ◽  
Zhen-ming Lu ◽  
Jie Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document