Study on on-line temperature measurement technology for core of pebble bed high temperature gas-cooled reactor

2021 ◽  
Vol 371 ◽  
pp. 110944
Author(s):  
Youjie Zhang ◽  
Xiang Fang ◽  
Tao Ma ◽  
Bing Xia ◽  
Chuan Li
Author(s):  
S. Abanades ◽  
J. M. Badie ◽  
Gilles Flamant ◽  
L. Fulcheri ◽  
J. Gonzales-Aguilar ◽  
...  

1987 ◽  
Vol 97 (1) ◽  
pp. 72-88 ◽  
Author(s):  
F. Schürrer ◽  
W. Ninaus ◽  
K. Oswald ◽  
R. Rabitsch ◽  
Hj. Müller ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 159-176 ◽  
Author(s):  
Shengyao Jiang ◽  
Jiyuan Tu ◽  
Xingtuan Yang ◽  
Nan Gui

2018 ◽  
Vol 33 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Xiang-wen Zhou ◽  
Yang Yang ◽  
Jing Song ◽  
Zhen-ming Lu ◽  
Jie Zhang ◽  
...  

Author(s):  
Yongyong Wu ◽  
Cheng Ren ◽  
Rui Li ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

The effective thermal diffusivity and conductivity of pebble bed in the high temperature gas-cooled reactor (HTGR) are two vital parameters to determine the operating temperature and power in varisized reactors with the restriction of inherent safety. A high-temperature heat transfer test facility and its inverse method for processing experimental data are presented in this work. The effective thermal diffusivity as well as conductivity of pebble bed will be measured at temperature up to 1600 °C in the under-construction facility with the full-scale in radius. The inverse method gives a global optimal relationship between thermal diffusivity and temperature through those thermocouple values in the pebble bed facility, and the conductivity is obtained by conversion from diffusivity. Furthermore, the robustness and uncertainty analyses are also set forth here to illustrate the validity of the algorithm and the corresponding experiment. A brief experimental result of preliminary low-temperature test is also presented in this work.


Author(s):  
Geoffrey J. Peter

The accident scenario resulting from blockages due to the retention of dust in the coolant gas or from the rupture of one or more fuel particles used in the High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors considered for the next generation of Advanced High Temperature Reactors (AHTR), for nuclear power production, and for high-temperature hydrogen production using nuclear reactors to reduce the carbon footprint is examined in this paper. Blockages can cause local variations in flow and heat transfer that may lead to hot spots within the bed that could compromise reactor safety. Therefore, it is important to know the void fraction distribution and the interstitial velocity field in the packed bed. The blockage for this numerical study simulated a region with significantly lower void than that in the rest of the bed. Finite difference technique solved the simplified continuity, momentum, and energy equations. Any meaningful outcome of the solution depended largely upon the validity of the boundary conditions. Among them, the inlet and outlet velocity profiles required special attention. Thus, a close approximation to these profiles obtained from an experimental set-up established the boundary conditions. This paper presents the development of the elliptic-partial differential equation for a bed of pebbles, and the solution procedure. The paper also discusses velocity and temperature profiles obtained from both numerical and experimental setup, with and without effect of blockage. In addition, the paper compares the results obtained from the experimental set-up with numerical simulation using a commercially available code that uses finite element techniques.


Author(s):  
Maria Elizabeth Scari ◽  
Antonella Lombardi Costa ◽  
Claubia Pereira ◽  
Clarysson Alberto Mello da Silva ◽  
Maria Auxiliadora Fortini Veloso

Several efforts have been considered in the development of the modular High Temperature Gas cooled Reactor (HTGR) planned to be a safe and efficient nuclear energy source for the production of electricity and industrial applications. In this work, the RELAP5-3D thermal hydraulic code was used to simulate the steady state behavior of the 10 MW pebble bed high temperature gas cooled reactor (HTR-10), designed, constructed and operated by the Institute of Nuclear and New Energy Technology (INET), in China. The reactor core is cooled by helium gas. In the simulation, results of temperature distribution within the pebble bed, inlet and outlet coolant temperatures, coolant mass flow, and others parameters have been compared with the data available in a benchmark document published by the International Atomic Energy Agency (IAEA) in 2013. This initial study demonstrates that the RELAP5-3D model is capable to reproduce the thermal behavior of the HTR-10.


Sign in / Sign up

Export Citation Format

Share Document