A noise cross PSD estimator based on improved minimum statistics method for two-microphone speech enhancement dedicated to a bilateral cochlear implant

2012 ◽  
Vol 73 (3) ◽  
pp. 256-264 ◽  
Author(s):  
Fathi Kallel ◽  
Mohamed Ghorbel ◽  
Mondher Frikha ◽  
Christian Berger-Vachon ◽  
Ahmed Ben Hamida
2012 ◽  
Vol 73 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Fathi Kallel ◽  
Mondher Frikha ◽  
Mohamed Ghorbel ◽  
Ahmed Ben Hamida ◽  
Christian Berger-Vachon

Author(s):  
Siriporn Dachasilaruk ◽  
Niphat Jantharamin ◽  
Apichai Rungruang

Cochlear implant (CI) listeners encounter difficulties in communicating with other persons in noisy listening environments. However, most CI research has been carried out using the English language. In this study, single-channel speech enhancement (SE) strategies as a pre-processing approach for the CI system were investigated in terms of Thai speech intelligibility improvement. Two SE algorithms, namely multi-band spectral subtraction (MBSS) and Weiner filter (WF) algorithms, were evaluated. Speech signals consisting of monosyllabic and bisyllabic Thai words were degraded by speech-shaped noise and babble noise at SNR levels of 0, 5, and 10 dB. Then the noisy words were enhanced using SE algorithms. The enhanced words were fed into the CI system to synthesize vocoded speech. The vocoded speech was presented to twenty normal-hearing listeners. The results indicated that speech intelligibility was marginally improved by the MBSS algorithm and significantly improved by the WF algorithm in some conditions. The enhanced bisyllabic words showed a noticeably higher intelligibility improvement than the enhanced monosyllabic words in all conditions, particularly in speech-shaped noise. Such outcomes may be beneficial to Thai-speaking CI listeners.


Acoustics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 711-725 ◽  
Author(s):  
Nikolaos Kilis ◽  
Nikolaos Mitianoudis

This paper presents a novel scheme for speech dereverberation. The core of our method is a two-stage single-channel speech enhancement scheme. Degraded speech obtains a sparser representation of the linear prediction residual in the first stage of our proposed scheme by applying orthogonal matching pursuit on overcomplete bases, trained by the K-SVD algorithm. Our method includes an estimation of reverberation and mixing time from a recorded hand clap or a simulated room impulse response, which are used to create a time-domain envelope. Late reverberation is suppressed at the second stage by estimating its energy from the previous envelope and removed with spectral subtraction. Further speech enhancement is applied on minimizing the background noise, based on optimal smoothing and minimum statistics. Experimental results indicate favorable quality, compared to two state-of-the-art methods, especially in real reverberant environments with increased reverberation and background noise.


2019 ◽  
Vol 23 ◽  
pp. 233121651983149 ◽  
Author(s):  
Wendy B. Potts ◽  
Lakshmish Ramanna ◽  
Trevor Perry ◽  
Christopher J. Long

This study looked at different methods to preserve interaural level difference (ILD) cues for bilateral cochlear implant (BiCI) recipients. One possible distortion to ILD is from automatic gain control (AGC). Localization accuracy of BiCI recipients using default versus increased AGC threshold and linked AGCs versus independent AGCs was examined. In addition, speech reception in noise was assessed using linked versus independent AGCs and enabling and disabling Autosensitivity™ Control. Subjective information via a diary and questionnaire was also collected about maps with linked and independent AGCs during a take-home experience. Localization accuracy improved in the increased AGC threshold and the linked AGCs conditions. Increasing the AGC threshold resulted in a 4° improvement in root mean square error averaged across all speaker locations. Using linked AGCs, BiCI participants experienced an 8° improvement for all speaker locations and a 19° improvement at the speaker location most affected by the AGC. Speech reception threshold in noise improved by an average of 2.5 dB when using linked AGCs versus independent AGCs. In addition, the effect of linked AGCs on speech in noise was compared with that of Autosensitivity™ Control. The Speech, Spatial, and Qualities of Hearing Scale-12 question comparative survey showed an improvement when using maps with linked AGCs. These findings support the hypothesis that ILD cues may be preserved by increasing the AGC threshold or linking AGCs.


Sign in / Sign up

Export Citation Format

Share Document