A mixed-order modeling approach for head-related transfer function in the spherical harmonic domain

2021 ◽  
Vol 176 ◽  
pp. 107828
Author(s):  
Junfeng Li ◽  
Biao Wu ◽  
Dingding Yao ◽  
Yonghong Yan
2020 ◽  
Author(s):  
Axel Ahrens ◽  
Maria Cuevas-Rodriguez ◽  
W. Owen Brimijoin

AbstractSpeech intelligibility is known to be affected by the relative spatial position between target and interferers. The benefit of a spatial separation is, along with other factors, related to the head-related transfer function (HRTF). The HRTF is individually different and thus, the cues that improve speech intelligibility might also be different. In the current study an auditory model was employed to predict speech intelligibility with a variety of HRTFs. The predicted speech intelligibility was found to vary across HRTFs. Thus, individual listeners might have different access to cues that are important for speech intelligibility.


2020 ◽  
Vol 10 (15) ◽  
pp. 5257
Author(s):  
Nathan Berwick ◽  
Hyunkook Lee

This study examined whether the spatial unmasking effect operates on speech reception thresholds (SRTs) in the median plane. SRTs were measured using an adaptive staircase procedure, with target speech sentences and speech-shaped noise maskers presented via loudspeakers at −30°, 0°, 30°, 60° and 90°. Results indicated a significant median plane spatial unmasking effect, with the largest SRT gain obtained for the −30° elevation of the masker. Head-related transfer function analysis suggests that the result is associated with the energy weighting of the ear-input signal of the masker at upper-mid frequencies relative to the maskee.


2007 ◽  
Vol 50 (3) ◽  
pp. 267-280 ◽  
Author(s):  
BoSun Xie ◽  
XiaoLi Zhong ◽  
Dan Rao ◽  
ZhiQiang Liang

2016 ◽  
Vol 41 (3) ◽  
pp. 437-447
Author(s):  
Dominik Storek ◽  
Frantisek Rund ◽  
Petr Marsalek

Abstract This paper analyses the performance of Differential Head-Related Transfer Function (DHRTF), an alternative transfer function for headphone-based virtual sound source positioning within a horizontal plane. This experimental one-channel function is used to reduce processing and avoid timbre affection while preserving signal features important for sound localisation. The use of positioning algorithm employing the DHRTF is compared to two other common positioning methods: amplitude panning and HRTF processing. Results of theoretical comparison and quality assessment of the methods by subjective listening tests are presented. The tests focus on distinctive aspects of the positioning methods: spatial impression, timbre affection, and loudness fluctuations. The results show that the DHRTF positioning method is applicable with very promising performance; it avoids perceptible channel coloration that occurs within the HRTF method, and it delivers spatial impression more successfully than the simple amplitude panning method.


2021 ◽  
Vol 1 (4) ◽  
pp. 044401
Author(s):  
Ishwarya Ananthabhotla ◽  
Vamsi Krishna Ithapu ◽  
W. Owen Brimijoin

Author(s):  
Benjamin Tsui ◽  
William A. P. Smith ◽  
Gavin Kearney

Spherical harmonic (SH) interpolation is a commonly used method to spatially up-sample sparse Head Related Transfer Function (HRTF) datasets to denser HRTF datasets. However, depending on the number of sparse HRTF measurements and SH order, this process can introduce distortions in high frequency representation of the HRTFs. This paper investigates whether it is possible to restore some of the distorted high frequency HRTF components using machine learning algorithms. A combination of Convolutional Auto-Encoder (CAE) and Denoising Auto-Encoder (DAE) models is proposed to restore the high frequency distortion in SH interpolated HRTFs. Results are evaluated using both Perceptual Spectral Difference (PSD) and localisation prediction models, both of which demonstrate significant improvement after the restoration process.


Sign in / Sign up

Export Citation Format

Share Document