scholarly journals Low-order Spherical Harmonic HRTF Restoration using a Neural Network Approach

Author(s):  
Benjamin Tsui ◽  
William A. P. Smith ◽  
Gavin Kearney

Spherical harmonic (SH) interpolation is a commonly used method to spatially up-sample sparse Head Related Transfer Function (HRTF) datasets to denser HRTF datasets. However, depending on the number of sparse HRTF measurements and SH order, this process can introduce distortions in high frequency representation of the HRTFs. This paper investigates whether it is possible to restore some of the distorted high frequency HRTF components using machine learning algorithms. A combination of Convolutional Auto-Encoder (CAE) and Denoising Auto-Encoder (DAE) models is proposed to restore the high frequency distortion in SH interpolated HRTFs. Results are evaluated using both Perceptual Spectral Difference (PSD) and localisation prediction models, both of which demonstrate significant improvement after the restoration process.

2020 ◽  
Vol 10 (17) ◽  
pp. 5764
Author(s):  
Benjamin Tsui ◽  
William A. P. Smith ◽  
Gavin Kearney

Spherical harmonic (SH) interpolation is a commonly used method to spatially up-sample sparse head related transfer function (HRTF) datasets to denser HRTF datasets. However, depending on the number of sparse HRTF measurements and SH order, this process can introduce distortions into high frequency representations of the HRTFs. This paper investigates whether it is possible to restore some of the distorted high frequency HRTF components using machine learning algorithms. A combination of convolutional auto-encoder (CAE) and denoising auto-encoder (DAE) models is proposed to restore the high frequency distortion in SH-interpolated HRTFs. Results were evaluated using both perceptual spectral difference (PSD) and localisation prediction models, both of which demonstrated significant improvement after the restoration process.


2020 ◽  
Vol 701 ◽  
pp. 134413 ◽  
Author(s):  
Dieu Tien Bui ◽  
Nhat-Duc Hoang ◽  
Francisco Martínez-Álvarez ◽  
Phuong-Thao Thi Ngo ◽  
Pham Viet Hoa ◽  
...  

Author(s):  
Nestor A. Schmajuk ◽  
Catalin V. Buhusi ◽  
Jeffrey A. Gray

2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


1997 ◽  
Author(s):  
Daniel Benzing ◽  
Kevin Whitaker ◽  
Dedra Moore ◽  
Daniel Benzing ◽  
Kevin Whitaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document