Assembly mechanism and photoproduced electron transfer for a novel cubic Cu2O/tetrakis(4-hydroxyphenyl)porphyrin hybrid with visible photocatalytic activity for hydrogen evolution

2017 ◽  
Vol 211 ◽  
pp. 296-304 ◽  
Author(s):  
Riyue Ge ◽  
Xiangqing Li ◽  
Bing Zhuang ◽  
Shi-Zhao Kang ◽  
Lixia Qin ◽  
...  
2018 ◽  
Vol 22 (09n10) ◽  
pp. 877-885 ◽  
Author(s):  
Qiang Luo ◽  
Kun Zhu ◽  
Shi-Zhao Kang ◽  
Lixia Qin ◽  
Sheng Han ◽  
...  

By facilely pre-implanting Co[Formula: see text] ions in the graphene oxide, a novel 5,15-diphenyl-10,20-di(4-pyridyl)porphyrin pillared graphene oxide was fabricated by means of electrostatic interaction and coordination interaction. It was shown that the morphology and the structure of graphene oxide and pyridylporphyrin nanocomposite were modified by introducing Co[Formula: see text] ions on the interface between graphene oxide and pyridylporphyrin. Furthermore, it was found that the photocatalytic hydrogen evolution activity over the Co[Formula: see text] ions implanted in the graphene oxide and pyridylporphyrin nanocomposite was evidently higher than in the graphene oxide and pyridylporphyrin nanocomposite without Co[Formula: see text]. This confirmed that strong interaction and efficient electron transfer between pyridylporphyrin and graphene oxide are the important reasons for the enhanced photocatalytic activity for hydrogen evolution. Subsequently, this technique will be a simple and efficient approach to optimize the transfer pathway of photogenerated electrons and to improve photocatalytic performance by implanting metal ions in the interface of nanocomposites.


2015 ◽  
Vol 3 (19) ◽  
pp. 10386-10394 ◽  
Author(s):  
Chun-Chao Hou ◽  
Ting-Ting Li ◽  
Shuang Cao ◽  
Yong Chen ◽  
Wen-Fu Fu

UIO-67 MOFs functionalized with a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst display enhanced photocatalytic activity, due to the facile electron transfer from the Ru- to Pt-centers in the MOFs.


2018 ◽  
Vol 8 (11) ◽  
pp. 2818-2824 ◽  
Author(s):  
Linxia Zhang ◽  
Lixia Qin ◽  
Shi-Zhao Kang ◽  
Guodong Li ◽  
Xiangqing Li

Novel 1,2-di(pyridine-4-ly)ethyne pillared GO composites with high photocatalytic activity were achieved with rare earth ions as interfacial linkers.


2019 ◽  
Vol 8 (1) ◽  
pp. 56-61
Author(s):  
Aneeya K. Samantara ◽  
Debasrita Dash ◽  
Dipti L. Bhuyan ◽  
Namita Dalai ◽  
Bijayalaxmi Jena

: In this article, we explored the possibility of controlling the reactivity of ZnO nanostructures by modifying its surface with gold nanoparticles (Au NPs). By varying the concentration of Au with different wt% (x = 0.01, 0.05, 0.08, 1 and 2), we have synthesized a series of (ZnO/Aux) nanocomposites (NCs). A thorough investigation of the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface has been carried out. It was observed that ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity among all concentrations of Au on the ZnO surface, which degrades the dye concentration within 2 minutes of visible light exposure. It was further revealed that with an increase in the size of plasmonic nanoparticles beyond 0.08%, the accessible surface area of the Au nanoparticle decreases. The photon absorption capacity of Au nanoparticle decreases beyond 0.08% resulting in a decrease in electron transfer rate from Au to ZnO and a decrease of photocatalytic activity. Background: Due to the industrialization process, most of the toxic materials go into the water bodies, affecting the water and our ecological system. The conventional techniques to remove dyes are expensive and inefficient. Recently, heterogeneous semiconductor materials like TiO2 and ZnO have been regarded as potential candidates for the removal of dye from the water system. Objective: To investigate the photocatalytic performance of different wt% of Au NPs on ZnO nanosurface and the effect of the size of Au NPs for photocatalytic performance in the degradation process. Methods: A facile microwave method has been adopted for the synthesis of ZnO nanostructure followed by a reduction of gold salt in the presence of ZnO nanostructure to form the composite. Results: ZnO/Au0.08 nanocomposite showed the highest photocatalytic activity which degrades the dye concentration within 2 minutes of visible light exposure. The schematic mechanism of electron transfer rate was discussed. Conclusion: Raspberry shaped ZnO nanoparticles modified with different percentages of Au NPs showed good photocatalytic behavior in the degradation of dye molecules. The synergetic effect of unique morphology of ZnO and well anchored Au nanostructures plays a crucial role.


2021 ◽  
Vol 45 (1) ◽  
pp. 162-168
Author(s):  
Tao Li ◽  
Jiandong Cui ◽  
Yezhan Lin ◽  
Kecheng Liu ◽  
Rui Li ◽  
...  

The enhanced photocatalytic hydrogen evolution performance of g-C3N4–Co3O4 2D–1D Z-scheme heterojunctions was achieved through the synergistic effect of the cobalt ion redox, conductive polyaniline, and a Co3O4 nanobelt.


Sign in / Sign up

Export Citation Format

Share Document