scholarly journals Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution

2018 ◽  
Vol 229 ◽  
pp. 163-170 ◽  
Author(s):  
Abdalaziz Aljabour ◽  
Halime Coskun ◽  
Dogukan Hazar Apaydin ◽  
Faruk Ozel ◽  
Achim Walter Hassel ◽  
...  
2021 ◽  
pp. 152121
Author(s):  
Daniil A. Eurov ◽  
Tatiana N. Rostovshchikova ◽  
Marina I. Shilina ◽  
Demid A. Kirilenko ◽  
Maria V. Tomkovich ◽  
...  

2021 ◽  
Author(s):  
Caroline Kwawu ◽  
Albert Aniagyei ◽  
Destiny Konadu ◽  
Elliot Menkah ◽  
Richard Tia

Abstract Iron and nickel are known active sites in the enzyme carbon monoxide dehydrogenases (CODH) which catalyzes CO2 to CO reversibly. The presence of nickel impurities in the earth abundant iron surface could provide a more efficient catalyst for CO2 degradation into CO, which is a feedstock for hydrocarbon fuel production. In the present study, we have employed spin-polarized dispersion-corrected density functional theory calculations within the generalized gradient approximation to elucidate the active sites on Fe (100)-Ni bimetals. We sort to ascertain the mechanism of CO2 dissociation to carbon monoxide on Ni deposited and alloyed surfaces at 0.25, 0.50 and 1 monolayer (ML) impurity concentrations. CO2 and (CO + O) bind exothermically i.e., -0.87 eV and − 1.51 eV respectively to the bare Fe (100) surface with a decomposition barrier of 0.53 eV. The presence of nickel generally lowers the amount of charge transferred to CO2 moiety. Generally, the binding strengths of CO2 were reduced on the modified surfaces and the extent of its activation was lowered. The barriers for CO2 dissociation increased mainly upon introduction of Ni impurities which is undesired. However, the 0.5 ML deposited (FeNi0.5(A)) surface is promising for CO2 decomposition, providing a lower energy barrier (of 0.32 eV) than the pristine Fe (100) surface. This active 1-dimensional defective FeNi0.5(A) surface provides a stepped surface and Ni-Ni bridge binding site for CO2 on Fe (100). Ni-Ni bridge site on Fe (100) is more effective for both CO2 binding or sequestration and dissociation compared to the stepped surface providing the Fe-Ni bridge binding site.


2021 ◽  
Author(s):  
Jae Kyu Lim ◽  
Ji-In Yang ◽  
Yun Jae Kim ◽  
Yeong-Jun Park ◽  
Yong Hwan Kim

Abstract Ferredoxin-dependent metabolic engineering of electron transfer circuits has been developed to enhance redox efficiency in the field of synthetic biology, e.g., for hydrogen production and for reduction of flavoproteins or NAD(P)+. Here, we present the bioconversion of carbon monoxide (CO) gas to formate via a synthetic CO:formate oxidoreductase (CFOR), designed as an enzyme complex for direct electron transfer between noninteracting CO dehydrogenase and formate dehydrogenase using an electron-transferring Fe-S fusion protein. The CFOR-introduced Thermococcus onnurineus mutant strains showed CO-dependent formate production in vivo and in vitro. The formate production rate from purified CFOR complex and specific formate productivity from the bioreactor were 348 ± 34 μmol/mg/min and 90.2 ± 20.4 mmol/g-cells/h, respectively. The CO-dependent CO2 reduction/formate production activity of synthetic CFOR was confirmed, indicating that direct electron transfer between two unrelated dehydrogenases was feasible via mediation of the FeS-FeS fusion protein.


2020 ◽  
Vol 8 (29) ◽  
pp. 14592-14599
Author(s):  
Kyeong Min Cho ◽  
Woo-Bin Jung ◽  
Donggyu Kim ◽  
Ju Ye Kim ◽  
Yesol Kim ◽  
...  

Selective reduction of CO2 to carbon monoxide is achieved by Au wrinkle film which can be made in simple and mass-producible process.


Sign in / Sign up

Export Citation Format

Share Document