scholarly journals Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst

2022 ◽  
Vol 300 ◽  
pp. 120716
Author(s):  
Xiaoli Yang ◽  
Jia Yang ◽  
Yalan Wang ◽  
Tao Zhao ◽  
Haoxi Ben ◽  
...  
Keyword(s):  
2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Ali A. Mirzaei ◽  
Samaneh Vahid ◽  
Mostafa Feyzi

Iron manganese oxides are prepared using a coprecipitation procedure and studied for the conversion of synthesis gas to light olefins and hydrocarbons. In particular, the effect of a range of preparation variables such as [Fe]/[Mn] molar ratios of the precipitation solution, pH of precipitation, temperature of precipitation, and precipitate aging times was investigated in detail. The results are interpreted in terms of the structure of the active catalyst and it has been generally concluded that the calcined catalyst (at 650 for 6 hours) containing 50%Fe/50%Mn-on molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.% is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, /CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), BET specific surface area and thermal analysis methods such as TGA and DSC.


2020 ◽  
pp. 8-23
Author(s):  
Anastasiya Kovaleva

There is a solution to prevent global problems caused due to carbon dioxide increase in planet atmosphere – reuse of CO2 in hydrogenation reaction. Literature analysis provides information about catalytic conversion of synthesis gas and carbon dioxide to carbohydrates in modern catalytic systems. Actual investigation of catalytic properties in GdFeO3 and GdMnO3 systems with perovskite structure has been carried out in the joint hydrogenation of carbon mono- and dioxide. Scientific novelty of research is to determine influence of the catalyst composition and reaction medium composition on the selectivity of target products.


Author(s):  
A. Christou ◽  
J. V. Foltz ◽  
N. Brown

In general, all BCC transition metals have been observed to twin under appropriate conditions. At the present time various experimental reports of solid solution effects on BCC metals have been made. Indications are that solid solution effects are important in the formation of twins. The formation of twins in metals and alloys may be explained in terms of dislocation mechanisms. It has been suggested that twins are nucleated by the achievement of local stress-concentration of the order of 15 to 45 times the applied stress. Prietner and Leslie have found that twins in BCC metals are nucleated at intersections of (110) and (112) or (112) and (112) type of planes.In this paper, observations are reported of a transmission microscope study of the iron manganese series under conditions in which twins both were and were not formed. High strain rates produced by shock loading provided the appropriate deformation conditions. The workhardening mechanisms of one alloy (Fe - 7.37 wt% Mn) were studied in detail.


Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


Sign in / Sign up

Export Citation Format

Share Document