catalyst composition
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 69)

H-INDEX

32
(FIVE YEARS 6)

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Stewart J. Taylor ◽  
Liu Yang ◽  
Ashleigh J. Fletcher

The production of resorcinol–formaldehyde xerogels has yielded insight into the gelation processes underpinning their structures. In this work, the role of the cation species from the catalyst is probed by studying the simultaneous addition of sodium carbonate and calcium carbonate to a resorcinol–formaldehyde mixture. Twenty-eight xerogels were prepared by varying the solids content, catalyst concentration, and catalyst composition, and each was analysed for its textural properties, including the surface area and average pore diameter. The results indicate that the role of the cation is linked to the stabilisation of the clusters formed within the system, and that the Group II catalyst causes the salting out of the oligomers, resulting in fewer, larger clusters, hence, an increase in pore size and a broadening of the pore size distribution. The results provide insight into how these systems can be further controlled to create tailored porous materials for a range of applications.


Author(s):  
CHUAN HU ◽  
Ho Hyun Wang ◽  
Jonghyeong Park ◽  
Haemin Kim ◽  
Nanjun Chen ◽  
...  

Abstract We systematically study anion exchange membrane fuel cells (AEMFCs) based on poly(aryl-co-aryl piperidinium) (c-PAP) copolymers and provide a scalable scenario for high-performance AEMFCs, covering the optimization of the relative humidity (RH), catalyst species, catalyst interfaces, and hydrophobic treatment. Specifically, high-water-permeable c-PAP ionomers in the presence of moderate relative humidity (RH) (75%/100%) can be used to address anode flooding and cathode dry-out issues. The composition of the catalyst layer and the anode hydrophobic treatment significantly impact the power density of AEMFCs. c-PAP-based AEMFCs with optimum catalyst composition achieve a peak power density (PPD) of 2.70 W cm-2 at 80 oC in H2-O2 after hydrophobic treatment. Pt1Co1/C cathode-based AEMFCs reach a PPD of 1.80 W cm-2 along with an outstanding specific power of 13.87 W mg-1. Moreover, these AEMFCs can be operated under a 0.2 A cm-2 current density at 60 oC for over 300 h with a voltage decay rate of ~300 μv h-1.


Author(s):  
Yangibaev S. ◽  
◽  
◽  

The effect of the components of the catalyst solution for the hydrocyanation of acetylene on the activity and selectivity of the process under liquid-phase conditions has been studied. The introduction of ZnSO 4 and ZnO additives into the shop catalyst did not give a positive effect under these conditions. Studies of catalysts in non-aqueous media lead to an increase in their activity and selectivity in comparison with aqueous media. It has been shown that the composition of the CuCl - NMP - DMF catalyst is characterized by high activity (up to 32 g / l.h.) and selectivity (83-90%), i.e. the activity of this composition is almost twice as high as compared to the water-based ones (12-18 g l.h.).


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Linda Zh. Nikoshvili ◽  
Kristina N. Shkerina ◽  
Alexey V. Bykov ◽  
Alexander I. Sidorov ◽  
Alexander L. Vasiliev ◽  
...  

This work addresses the Suzuki cross-coupling between 4-bromoanisole (BrAn) and phenylboronic acid (PBA) in an environmentally benign ethanol–water solvent catalysed by mono- (Pd) and bimetallic (PdAu, PdCu, PdZn) nanoparticles (NPs) stabilised within hyper-cross-linked polystyrene (HPS) bearing tertiary amino groups. Small Pd NPs of about 2 nm in diameters were formed and stabilized by HPS independently in the presence of other metals. High catalytic activity and complete conversion of BrAn was attained at low Pd loading. Introduction of Zn to the catalyst composition resulted in the formation of Pd/Zn/ZnO NPs, which demonstrated nearly double activity as compared to Pd/HPS. Bimetallic core-shell PdAu/HPS samples were 3-fold more active as compared to Pd/HPS. Both Pd/HPS and PdAu/HPS samples revealed promising stability confirmed by catalyst recycling in repeated reaction runs.


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 47-58
Author(s):  
Sarah Tschirner ◽  
Eric Weingart ◽  
Linda Teevs ◽  
Ulf Prüße

In this work, a highly selective and active gold-based catalyst for the oxidation of high concentrated monoethylene glycol (MEG) in aqueous solution (3 M, 20 wt%) is described. High glycolic acid (GA) selectivity was achieved under mild reaction conditions. The optimization of the catalyst composition and of the reaction conditions for the oxidation of MEG in semi-batch mode under alkaline conditions led to a GA yield of >80% with a GA selectivity of about 90% in short reaction time. The bimetallic catalyst 0.1 wt% AuPt (9:1)/CeO2 showed very high activity (>2000 mmolMEG/gmetalmin) in the oxidation of MEG and, contrary to other studies, an extremely high educt to metal mole ratio of >25,000 was used. Additionally, the gold–platinum catalyst showed a high GA selectivity over more than 10 runs. A very efficient and highly selective process for the GA production from MEG under industrial relevant reaction conditions was established. In order to obtain a GA solution with high purity for the subsequent polymerization, the received reaction solution containing sodium glycolate, unreacted MEG and sodium oxalate is purified by a novel down-stream process via electrodialysis. The overall GA yield of the process exceeds 90% as unreacted MEG can be recycled.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1535
Author(s):  
Xiaoyu Liu ◽  
Wenqi Guo ◽  
Xueer Wang ◽  
Yintian Guo ◽  
Biao Zhang ◽  
...  

TiCl4/MgCl2/MCM-41 type bi-supported Ziegler-Natta catalysts with different MgCl2/MCM-41 ratios were synthesized by adsorbing TiCl4 onto MgCl2 crystallites anchored in mesopores of MCM-41 (mesoporous silica with 3.4 nm pore size). Ethylene/1-hexene copolymerization with the catalysts was conducted at different 1-hexene concentrations and ethylene pressures. MgCl2/MCM-41 composite supports and the catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption analysis (BET), and elemental analysis. The copolymers were fractionated by extraction with boiling n-heptane, and comonomer contents of the fractions were determined. Under 4 bar ethylene pressure, the bi-supported catalysts showed higher activity and a stronger comonomer activation effect than the TiCl4/MgCl2 catalyst. In comparison with the TiCl4/MgCl2 catalyst, the bi-supported catalysts produced much less copolymer fraction of low molecular weight and high 1-hexene content, meaning that the active center distribution of the catalyst was significantly changed by introducing MCM-41 in the support. The copolymer produced by the bi-supported catalysts showed similar melting temperature to that produced by TiCl4/MgCl2 under the same polymerization conditions. The space confinement effect of the mesopores of MCM-41 on the size and structure of MgCl2 crystallites is proposed as the main reason for the special active center distribution of the bi-supported catalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1353
Author(s):  
Xingmin Liu ◽  
Wenjie Xie ◽  
Marc Widenmeyer ◽  
Hui Ding ◽  
Guoxing Chen ◽  
...  

In this work, multi-walled carbon nanotube composites (MWCNCs) were produced by catalytic pyrolysis of post-consumer plastics with aluminium oxide-supported nickel, cobalt, and their bimetallic (Ni/α–Al2O3, Co/α–Al2O3, and NiCo/α–Al2O3) oxide-based catalysts. The influence of catalyst composition and catalytic reaction temperature on the carbon yield and structure of CNCs were investigated. Different temperatures (800, 900, 950, and 1000 °C) and catalyst compositions (Ni, Co, and Ni/Co) were explored to maximize the yield of carbon deposited on the catalyst. The obtained results showed that at the same catalytic temperature (900 °C), a Ni/Co bimetallic catalyst exhibited higher carbon yield than the individual monometallic catalysts due to a better cracking capability on carbon-hydrogen bonds. With the increase of temperature, the carbon yield of the Ni/Co bimetallic catalyst increased first and then decreased. At a temperature of 950 °C, the Ni/Co bimetallic catalyst achieved its largest carbon yield, which can reach 255 mg g−1plastic. The growth of CNCs followed a “particle-wire-tube” mechanism for all studied catalysts. This work finds the potential application of complex oxide composite material catalysts for the generation of CNCs in catalytic pyrolysis of wasted plastic.


2021 ◽  
Vol 895 (1) ◽  
pp. 012024
Author(s):  
K S Makarevich ◽  
O I Kaminsky ◽  
A V Zaitsev ◽  
E A Kirichenko ◽  
V O Krutikova

Abstract This work is devoted to the study of new bioindifferent photocatalysts that use the energy of solar radiation to purify water from organic pollutants. Photocatalytic materials were obtained by a previously developed low-temperature pyrolytic synthesis. Varying the bismuth content in the percursor mixture within 15-30 %, allows controlling the phase formation of the bismuth and strontium silicate phases. The samples obtained at 25 % bismuth in the precursor mixture (in terms of Bi2O3 %, wt.) show the highest photocatalytic activity with Bi12SiO2, Bi4Si3O12 formed in the catalyst composition. Photocatalytic activity of coatings with the predominance of bismuth silicates is inferior to coatings with the predominance of strontium bismuthates, but their greater hydrolytic stability is observed.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1312
Author(s):  
Maik Dreyer ◽  
Anna Rabe ◽  
Eko Budiyanto ◽  
Klaus Friedel Ortega ◽  
Sharif Najafishirtari ◽  
...  

Reactive oxygen species (ROS) are considered to be responsible for the high catalytic activity of transition metal oxides like Co3-xFexO4 in oxidation reactions, but the detailed influences of catalyst composition and morphology on the formation of these reactive oxygen species are not fully understood. In the presented study, Co3O4 spinels of different mesostructures, i.e., particle size, crystallinity, and specific surface area, are characterized by powder X-ray diffraction, scanning electron microscopy, and physisorption. The materials were tested in CO oxidation performed in consecutive runs and compared to a Co3-xFexO4 composition series with a similar mesostructure to study the effects of catalyst morphology and composition on ROS formation. In the first run, the CO conversion was observed to be dominated by the exposed surface area for the pure Co-spinels, while a negative effect of Fe content in the spinels was seen. In the following oxidation run, a U-shaped conversion curve was observed for materials with high surface area, which indicated the in situ formation of ROS on those materials that were responsible for the new activity at low temperature. This activation was not stable at the higher reaction temperature but was confirmed after temperature-programmed oxidation (TPO). However, no activation after the first run was observed for low-surface-area and highly crystalline materials, and the lowest surface-area material was not even activated after TPO. Among the catalyst series studied here, a correlation of small particle size and large surface area with the ability for ROS formation is presented, and the benefit of a nanoscaled catalyst is discussed. Despite the generally negative effect of Fe, the highest relative activation was observed at intermediate Fe contents suggesting that Fe may be involved in ROS formation.


Sign in / Sign up

Export Citation Format

Share Document