Maximization of primary energy savings of solar heating and cooling systems by transient simulations and computer design of experiments

2010 ◽  
Vol 87 (2) ◽  
pp. 524-540 ◽  
Author(s):  
F. Calise ◽  
A. Palombo ◽  
L. Vanoli

Seasonal and annual performance data are available on only a limited number of the several thousand solar space heating systems now in operation. The emerging information indicates that most of the heat required in buildings can be supplied by solar energy delivered from flat-plate collectors and stored overnight in tanks of water and bins of rock pebbles. Numerous mechanical and operational problems, mainly in liquid collection and storage systems, demand attention. Annual costs of solar heating equipment and its installation usually exceed current values of energy savings, but fuel prices are expected to escalate at rates which often favour solar purchase today. Detailed performance data on several types of solar heating and cooling systems in buildings of identical design are presented, compared and interpreted. Maintenance and repair requirements are noted and contrasted, and forecasts of use in various applications are presented.


Author(s):  
Giovanni Nurzia ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The deployment of solar driven air conditioning is a feasible target in all countries where high solar irradiation matches high cooling loads in buildings: the goal is to gradually replace compression chillers and reduce peak electricity demand during summer. Moreover, as solar thermal collectors are installed, solar cooling systems can be profitably employed during winter. In the present work a code has been implemented for the simulation and the design optimization of combined solar heating and cooling systems. The following system layout has been considered: in warm months the cooling demand is satisfied by means of an absorption chiller — driven by a solar collector field — and a reversible heat pump operating in series. A hot storage matches the variability of solar radiation, while a cold storage smoothes the non-stationarity of cooling demand. During winter, the reversible compression heat pump operates for space heating. Solar collectors are used as thermal source at the evaporator of the heat pump, increasing its coefficient of performance. The code, based on TRNSYS platform, is able to simulate the system throughout a year. Besides TRNSYS standard components a detailed model of the absorption chiller has been included, in order to accurately simulate its off-design operation. Using an optimization tool the size of each component is identified for a given space heating and cooling demand. The minimization of life cycle costs of the system has been chosen as the objective of the optimization. Results of a case study are presented and discussed for a solar heating and cooling plant in an office building. The optimization procedure has been carried out with simulations for a typical Northern Italy town (Alpine climate) and a typical Southern Italy town (Mediterranean climate).


Sign in / Sign up

Export Citation Format

Share Document