Optimization of dual-loop exhaust gas recirculation splitting for a light-duty diesel engine with model-based control

2016 ◽  
Vol 181 ◽  
pp. 268-277 ◽  
Author(s):  
Jungsoo Park ◽  
Jungwook Choi
2001 ◽  
Vol 34 (1) ◽  
pp. 277-282 ◽  
Author(s):  
Joachim Rückert ◽  
Axel Schloßer ◽  
Heinrich Rake ◽  
Bert Kinoo ◽  
Michael Krüger ◽  
...  

Author(s):  
Yeongseop Park ◽  
Inseok Park ◽  
Joowon Lee ◽  
Kyunghan Min ◽  
Myoungho Sunwoo

This paper investigates the design of model-based feedforward compensators for exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems using air path models for a common-rail direct injection (CRDI) diesel engine to cope with the nonlinear control problem. The model-based feedforward compensators generate set-positions of the EGR valve and the VGT vane to track the desired mass air flow (MAF) and manifold absolute pressure (MAP) with consideration of the current engine operating conditions. In the best case, the rising time to reach 90% of the MAF set-point was reduced by 69.8% compared with the look-up table based feedforward compensators.


Sign in / Sign up

Export Citation Format

Share Document