Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany

2019 ◽  
Vol 237 ◽  
pp. 618-634 ◽  
Author(s):  
Matthias Rupp ◽  
Nils Handschuh ◽  
Christian Rieke ◽  
Isabel Kuperjans
2015 ◽  
Vol 148 ◽  
pp. 496-505 ◽  
Author(s):  
Surendraprabu Rangaraju ◽  
Laurent De Vroey ◽  
Maarten Messagie ◽  
Jan Mertens ◽  
Joeri Van Mierlo

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6508
Author(s):  
Mona Kabus ◽  
Lars Nolting ◽  
Benedict J. Mortimer ◽  
Jan C. Koj ◽  
Wilhelm Kuckshinrichs ◽  
...  

We investigate the environmental impacts of on-board (based on alternating current, AC) and off-board (based on direct current, DC) charging concepts for electric vehicles using Life Cycle Assessment and considering a maximum charging power of 22 kW (AC) and 50 kW (DC). Our results show that the manufacturing of chargers provokes the highest contribution to environmental impacts of the production phase. Within the chargers, the filters could be identified as main polluters for all power levels. When comparing the results on a system level, the DC system causes less environmental impact than the AC system in all impact categories. In our diffusion scenarios for electric vehicles, annual emission reductions of up to 35 million kg CO2-eq. could be achieved when the DC system is used instead of the AC system. In addition to the environmental assessment, we examine economic effects. Here, we find annual savings of up to 8.5 million euros, when the DC system is used instead of the AC system.


2014 ◽  
Vol 8 (5) ◽  
pp. 698-704 ◽  
Author(s):  
Takuya Taguchi ◽  
◽  
Kei Matsumoto ◽  
Keita Imamura ◽  
Koichiro Goto ◽  
...  

Electric vehicles (EVs) have numerous inherent challenges, including running out of power frequently and taking a long time to charge. To make matters worse, current automotive navigation systems cannot provide proper route searches that include charging plans. One way to tackle these challenging problems is to propose several route plans and select one which meets the driver’s needs. In this paper, the following three evaluation criteria are proposed: shortening travel time by predicting charging queues, maintaining high residual capacity of the battery, and utilizing charging time. The proposed method is applied to Okinawa, Japan as a case study. The simulation results using this evaluation method in Okinawa demonstrate its potential utility and open the way for future work on relieving the stress of EV drivers.


2019 ◽  
Vol 11 (23) ◽  
pp. 6657 ◽  
Author(s):  
Solhee Kim ◽  
Rylie E. O. Pelton ◽  
Timothy M. Smith ◽  
Jimin Lee ◽  
Jeongbae Jeon ◽  
...  

The environmental impact of battery electric vehicles (BEVs) largely depends on the environmental profile of the national electric power grid that enables their operation. The purpose of this study is to analyze the environmental performance of BEV usage in Korea considering the changes and trajectory of the national power roadmap. We examined the environmental performance using a weighted environmental index, considering eight impact categories. The results showed that the weighted environmental impact of Korea’s national power grid supply would increase overall by 66% from 2015 to 2029 using the plan laid out by the 7th Power Roadmap, and by only 33% from 2017 to 2031 using the 8th Power Roadmap plan. This change reflects the substantial amount of renewables in the more recent power mix plan. In 2016, BEV usage in Korea resulted in emissions reductions of about 37% compared with diesel passenger vehicles, and 41% compared with gasoline vehicles per kilometer driven (100 g CO2e/km versus 158 g and 170 g CO2e/km, respectively) related to transportation sector. By 2030, BEV usage in Korea is expected to achieve a greater emissions reduction of about 53% compared with diesel vehicles and 56% compared with gasoline vehicles. However, trade-offs are also expected because of increased particulate matter (PM) pollution, which we anticipate to increase by 84% compared with 2016 conditions. Despite these projected increases in PM emissions, increased BEV usage in Korea is expected to result in important global and local benefits through reductions of climate-changing greenhouse gas (GHG) emissions.


Sign in / Sign up

Export Citation Format

Share Document