High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations

2019 ◽  
Vol 253 ◽  
pp. 113546 ◽  
Author(s):  
Ghufran Aldawood ◽  
Hieu Tri Nguyen ◽  
Hamzeh Bardaweel
2011 ◽  
Vol 109 (7) ◽  
pp. 07E514 ◽  
Author(s):  
X. Xing ◽  
G. M. Yang ◽  
M. Liu ◽  
J. Lou ◽  
O. Obi ◽  
...  

2014 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Daniel J. Apo ◽  
Shashank Priya

AbstractWe report a levitation-induced vibration energy harvester based on a double-repulsion configuration in the moving magnet composite. Computational modeling clearly illustrated the advantages of the double-repulsion configuration over the single-repulsion and no-repulsion configurations. Double-repulsion configuration provided the best dynamics (displacement and velocity) and output response (voltage). Based on the modeling results, an AA battery-sized harvester with the double-repulsion configuration was fabricated. The harvester exhibited high power response at low frequencies (12.9 mW at 1


2021 ◽  
Vol 119 (21) ◽  
pp. 213904
Author(s):  
Hanxiao Wu ◽  
Zhi Tao ◽  
Haiwang Li ◽  
Tiantong Xu ◽  
Wenbin Wang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 772
Author(s):  
Xianming He ◽  
Dongxiao Li ◽  
Hong Zhou ◽  
Xindan Hui ◽  
Xiaojing Mu

The piezoelectric vibration energy harvester (PVEH) based on the variable cross-section cantilever beam (VCSCB) structure has the advantages of uniform axial strain distribution and high output power density, so it has become a research hotspot of the PVEH. However, its electromechanical model needs to be further studied. In this paper, the bidirectional coupled distributed parameter electromechanical model of the MEMS VCSCB based PVEH is constructed, analytically solved, and verified, which laid an important theoretical foundation for structural design and optimization, performance improvement, and output prediction of the PVEH. Based on the constructed model, the output performances of five kinds of VCSCB based PVEHs with different cross-sectional shapes were compared and analyzed. The results show that the PVEH with the concave quadratic beam shape has the best output due to the uniform surface stress distribution. Additionally, the influence of the main structural parameters of the MEMS trapezoidal cantilever beam (TCB) based PVEH on the output performance of the device is theoretically analyzed. Finally, a prototype of the Aluminum Nitride (AlN) TCB based PVEH is designed and developed. The peak open-circuit voltage and normalized power density of the device can reach 5.64 V and 742 μW/cm3/g2, which is in good agreement with the theoretical model value. The prototype has wide application prospects in the power supply of the wireless sensor network node such as the structural health monitoring system and the Internet of Things.


2022 ◽  
Vol 253 ◽  
pp. 115146
Author(s):  
Yifeng Wang ◽  
Peigen Wang ◽  
Shoutai Li ◽  
Mingyuan Gao ◽  
Huajiang Ouyang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document