An electromagnetic vibration energy harvester using a magnet-array-based vibration-to-rotation conversion mechanism

2022 ◽  
Vol 253 ◽  
pp. 115146
Author(s):  
Yifeng Wang ◽  
Peigen Wang ◽  
Shoutai Li ◽  
Mingyuan Gao ◽  
Huajiang Ouyang ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2410 ◽  
Author(s):  
Bei Zhang ◽  
Qichang Zhang ◽  
Wei Wang ◽  
Jianxin Han ◽  
Xiaoli Tang ◽  
...  

A novel bistable electromagnetic vibration energy harvester (BEMH) is constructed and optimized in this study, based on a nonlinear system consisting mainly of a flexible membrane and a magnetic spring. A large-amplitude transverse vibration equation of the system is established with the general nonlinear geometry and magnetic force. Firstly, the mathematical model, considering the higher-order nonlinearities given by nonlinear Galerkin method, is applied to a membrane with a co-axial magnet mass and magnetic spring. Secondly, the steady vibration response of the membrane subjected to a harmonic base motion is obtained, and then the output power considering electromagnetic effect is analytically derived. On this basis, a parametric study in a broad frequency domain has been achieved for the BEMH with different radius ratios and membrane thicknesses. It is demonstrated that model predictions are both in close agreement with results from the finite element simulation and experiment data. Finally, the proposed efficient solution method is used to obtain an optimizing strategy for the design of multi-stable energy harvesters with the similar flexible structure.


2018 ◽  
Vol 19 ◽  
pp. 01003
Author(s):  
Marcin Kulik ◽  
Mariusz Jagieła ◽  
Bernard Baron

The paper aims at applying the interior point algorithm in optimisation of additional coils of a small resonant electromagnetic vibration energy harvester. The system, which consists of a coreless microgenerator is driven by external vibration through a cantilever-beam spring element. Originally, the system contains only one coil mounted centrally between the moving magnets. It was found that the very low induced voltage can be significantly increased by exploitation of leakage flux outside the magnets using additional coils, whose are optimised for maximum voltage.


2018 ◽  
Vol 202 ◽  
pp. 02002
Author(s):  
Faruq Muhammad Foong ◽  
Chung Ket Thein ◽  
Beng Lee Ooi

Vibration energy harvesting has emerged as a promising source of sustainable energy to power small electronics. This study investigates the effect of total damping on the power output of an electromagnetic vibration energy harvester. Analytical results show that an increase in the effective mass of the harvester increases the mechanical damping but decreases the electromagnetic damping. The total damping of the harvester displayed an increasing trend with the effective mass when the electromagnetic damping is lower that the mechanical damping but changed into a decreasing trend when the electromagnetic damping becomes larger than the mechanical damping. Findings also suggest that there is an optimum proof mass to beam mass ratio where the harvester would produce maximum power in both cases of where a constant and varying optimum load resistance were considered.


Sign in / Sign up

Export Citation Format

Share Document