Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review

2020 ◽  
Vol 278 ◽  
pp. 115752
Author(s):  
Guohui Wang ◽  
Yanan Yang ◽  
Shuxin Wang
2021 ◽  
Vol 11 (15) ◽  
pp. 7086
Author(s):  
Qingchao Xia ◽  
Gul Muhammad ◽  
Bingzhe Chen ◽  
Feng Zhang ◽  
Zhifeng Zhang ◽  
...  

An underwater profiler is one of the popular platforms for ocean observation. Due to energy limitations, conventional underwater vehicles have a short life span, which cannot meet the needs of long-term ocean exploration. Therefore, there is a growing interest in using ocean energy such as ocean thermal energy and wave energy for driving. This study aimed to investigate an energy-saving and ocean thermal energy (OTE)-powered buoyancy driving system of the ocean profiler. The purpose of this study was to explore an ocean profiler buoyancy driving system powered by ocean thermal energy (OTE). According to the seawater profile temperature gradient, an OTE-powered electro-hydraulic control system was designed, and the dynamic characteristics of this system are simulated and analyzed by using the power bonding diagram method. Based on the results conducted from lake tests, this profiler possesses the self-driving capability for using OTE perfectly. This research can provide important guidance for the design of the buoyancy drive system of underwater vehicles.


1998 ◽  
Vol 51 (1) ◽  
pp. 79-105 ◽  
Author(s):  
Paul J. Craven ◽  
Robert Sutton ◽  
Roland S. Burns

In recent years, both the offshore industry and the navies of the world have become increasingly interested in the potential operational usage of unmanned underwater vehicles. This paper provides a comprehensive review of a number of modern control approaches and artificial intelligence techniques which have been applied to the autopilot design problem for such craft.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2192
Author(s):  
Robert J. Brecha ◽  
Katherine Schoenenberger ◽  
Masaō Ashtine ◽  
Randy Koon Koon

Many Caribbean island nations have historically been heavily dependent on imported fossil fuels for both power and transportation, while at the same time being at an enhanced risk from the impacts of climate change, although their emissions represent a very tiny fraction of the global total responsible for climate change. Small island developing states (SIDSs) are among the leaders in advocating for the ambitious 1.5 °C Paris Agreement target and the transition to 100% sustainable, renewable energy systems. In this work, three central results are presented. First, through GIS mapping of all Caribbean islands, the potential for near-coastal deep-water as a resource for ocean thermal energy conversion (OTEC) is shown, and these results are coupled with an estimate of the countries for which OTEC would be most advantageous due to a lack of other dispatchable renewable power options. Secondly, hourly data have been utilized to explicitly show the trade-offs between battery storage needs and dispatchable renewable sources such as OTEC in 100% renewable electricity systems, both in technological and economic terms. Finally, the utility of near-shore, open-cycle OTEC with accompanying desalination is shown to enable a higher penetration of renewable energy and lead to lower system levelized costs than those of a conventional fossil fuel system.


2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Sathiabama T. T. Thirugnana ◽  
Abu Bakar Jaafar ◽  
Takeshi Yasunaga ◽  
Tsutomu Nakaoka ◽  
Yasuyuki Ikegami ◽  
...  

The Malaysian Government has set a target of achieving 20% penetration of Renewable Energy (RE) in the energy mix spectrum by 2025. In order to get closer to the target, Ocean Thermal Energy Conversion (OTEC) aligned with solar PV, biogas and biomass energy sources must be evaluated and comprehended. Hybrid OTEC systems consisting of energy and water production are currently under research and validation. Therefore, for the construction of a commercial OTEC plant, 1 MW or 2.5 MW, the choice of a strategic location or potential site is vital. In this paper, oceanographic data such as seawater temperature, depth, salinity and dissolved oxygen obtained from the Japan Oceanographic Data Center (JODC) for Semporna, Tawau, Kudat, Pulau Layang-Layang and Pulau Kalumpang in Sabah, Malaysia, are reported. The RE available from the Exclusive Economic Zone (EEZ) on the coast of Sabah was estimated based on the JODC data obtained. There were no remarkable differences in temperatures between the five sites, which were reported as approximately 27 °C at the surface and 7 °C at depths below 600 m. The surface salinities below 100 m at those sites were slightly lower than the deeper waters, where the salinity increased up to approximately 34.5 PSU. Dissolved oxygen data from the Pulau Kalumpang site showed a slight increment to approximately 4.7 mL/L at depth intervals below 50 m, before declining steadily to approximately 1.7 mL/L along with the depth. The temperature-salinity profiles of the Malaysian sites were congruent with those of Palau, Kumejima and Okinawa, but not with that of Fiji, where the salinity profile showed a distinct variation at the relative depth (below 200 m). Estimates of RE using two different methods were used to prove the potential of OTEC in Malaysia.


Sign in / Sign up

Export Citation Format

Share Document