Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings

2022 ◽  
Vol 305 ◽  
pp. 117875
Author(s):  
Bin Zou ◽  
Jinqing Peng ◽  
Sihui Li ◽  
Yi Li ◽  
Jinyue Yan ◽  
...  
2011 ◽  
pp. 456-477 ◽  
Author(s):  
Vassilis Papataxiarhis ◽  
Vassileios Tsetsos ◽  
Isambo Karali ◽  
Panagiotis Stamatopoulos

Embedding rules into Web applications, and distributed applications in general, seems to constitute a significant task in order to accommodate desired expressivity features in such environments. Various methodologies and reasoning modules have been proposed to manage rules and knowledge on the Web. The main objective of the chapter is to survey related work in this area and discuss relevant theories, methodologies and tools that can be used to develop rule-based applications for the Web. The chapter deals with both ways that have been formally defined for modeling a domain of interest: the first based on standard logics while the second one stemmed from the logic programming perspective. Furthermore, a comparative study that evaluates the reasoning engines and the various knowledge representation methodologies, focusing on rules, is presented.


2014 ◽  
Vol 57 (12) ◽  
pp. 2542-2550 ◽  
Author(s):  
YaHui Zhang ◽  
XiaoHong Jiao ◽  
Liang Li ◽  
Chao Yang ◽  
LiPeng Zhang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 588 ◽  
Author(s):  
Chaofeng Pan ◽  
Yanyan Liang ◽  
Long Chen ◽  
Liao Chen

In this paper, the efficiency characteristics of battery, super capacitor (SC), direct current (DC)-DC converter and electric motor in a hybrid power system of an electric vehicle (EV) are analyzed. In addition, the optimal efficiency model of the hybrid power system is proposed based on the hybrid power system component’s models. A rule-based strategy is then proposed based on the projection partition of composite power system efficiency, so it has strong adaptive adjustment ability. Additionally. the simulation results under the New European Driving Cycle (NEDC) condition show that the efficiency of rule-based strategy is higher than that of single power system. Furthermore, in order to explore the maximum energy-saving potential of hybrid power electric vehicles, a dynamic programming (DP) optimization method is proposed on the basis of the establishment of the whole hybrid power system, which takes into account various energy consumption factors of the whole system. Compared to the battery-only EV based on simulation results, the hybrid power system controlled by rule-based strategy can decrease energy consumption by 13.4% in line with the NEDC condition, while the power-split strategy derived from the DP approach can reduce energy consumption by 17.6%. The results show that compared with rule-based strategy, the optimized DP strategy has higher system efficiency and lower energy consumption.


Sign in / Sign up

Export Citation Format

Share Document