Soil management and soil properties in a Kenyan smallholder irrigation system on naturally low-fertile soils

2018 ◽  
Vol 90 ◽  
pp. 248-256 ◽  
Author(s):  
Martina Angela Caretta ◽  
Lars-Ove Westerberg ◽  
David Mwehia Mburu ◽  
Manuel Fischer ◽  
Lowe Börjeson
2018 ◽  
pp. 1-14
Author(s):  
Alidad Karami ◽  
Sadegh Afzalinia

Aims: Determining effects of spatial variation of some soil properties on wheat quantity and quality variation in order that proper soil and inputs management can be applied for sustainable wheat production. Study Design: Analyzing data of a field with center pivot irrigation system and uniform management using the geostatistical method. Place and Duration of Study: Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, Darab, Iran, from September 2013 to February 2014. Methodology: Wheat yield data harvested by class lexion 510 combine from 25 m2 plots (11340 locations) with the corresponding geographical location were used. Besides, soil properties and wheat yield were measured at 36 randomly selected points on the field. Interpolation of parameters was predicted with the best semi-variogram model using kriging, inverse distance weighted (IDW), and cokriging methods. Results: Results showed that wheat yield varied from 2 to 10.08 tons per hectare. Cokriging with cofactor of kernel weight interpolator had more accuracy compared to the combine default interpolator (kriging). A logical, linear correlation was found between different parameters. The best variogram model for pH, OC, and ρb was exponential, for EC, TNV, SP, soil silt and clay percentage was spherical, and for soil, percentage sand was Gaussian model. Data of soil sand, silt, and clay percentage, EC, TNV, and SP had strong spatial structure, and soil pH, OC, and ρb had moderate spatial structure. The best interpolation method for soil pH, EC, sand and silt percentage was kriging method; while, for TNV, SP, OC, ρb, and clay percentage was IDW. Conclusion: There was a close relationship between wheat yield variation and changes in the soil properties. Soil properties and wheat yield distribution maps provided valuable information which could be used for wheat yield improvement in precision agriculture.


2019 ◽  
Vol 20 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Anderson Mendes Araujo ◽  
Josimar Henrique de Lima Lessa ◽  
Francielle Roberta Dias de Lima ◽  
Jéssica Francisco Raymundo ◽  
Nilton Curi ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 947 ◽  
Author(s):  
Abdu Y. Yimam ◽  
Tewodros T. Assefa ◽  
Nigus F. Adane ◽  
Seifu A. Tilahun ◽  
Manoj K. Jha ◽  
...  

A field experiment consists of conservation agriculture (CA) and conventional tillage (CT) practices were set up in two areas, Robit and Dangishta, in sub-humid Ethiopian highlands. Irrigation water use, soil moisture, and agronomic data were monitored, and laboratory testing was conducted for soil samples, which were collected from 0 to 40 cm depth before planting and after harvest during the study period of 2015–2017. Calculation of crop coefficient (Kc) revealed a significant decrease in Kc values under CA as compared to CT. The result depicted that CA with a drip irrigation system significantly (α = 0.05) reduced Kc values of crops as compared to CT. Specifically, 20% reductions were observed for onion, cabbage, and garlic under CA whereas 10% reductions were observed for pepper throughout the crop base period. Consequently, irrigation water measurement showed that about 18% to 28% of a significant irrigation water savings were observed for the range of vegetables under CA as compared to CT. On the other hand, the results of soil measurement showed the CA practice significantly (α = 0.05) increased soil moisture (4%, 7%, 8%, and 10% increment for onion, cabbage, garlic, pepper) than CT practice even if irrigation input was small in CA practice. In addition, CA was found to improve the soil physico-chemical properties with significant improvement on organic matter (10%), field capacity (4%), and total nitrogen (10%) in the Dangishta experimental site. CA with drip irrigation is evidenced to be an efficient water-saving technology while improving soil properties to support sustainable intensification in the region.


2006 ◽  
Vol 21 (1) ◽  
pp. 49-59 ◽  
Author(s):  
B.J. Wienhold ◽  
J.L. Pikul ◽  
M.A. Liebig ◽  
M.M. Mikha ◽  
G.E. Varvel ◽  
...  

AbstractSoils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains.


Sign in / Sign up

Export Citation Format

Share Document