Monitoring land-cover and land-use dynamics in Fanjingshan National Nature Reserve

2019 ◽  
Vol 111 ◽  
pp. 102077 ◽  
Author(s):  
Yu Hsin Tsai ◽  
Douglas Stow ◽  
Li An ◽  
Hsiang Ling Chen ◽  
Rebecca Lewison ◽  
...  
2010 ◽  
Vol 20 (1) ◽  
pp. 13-24 ◽  
Author(s):  
H. X. JIANG ◽  
Y. Q. HOU ◽  
G. Z. CHU ◽  
F. W. QIAN ◽  
H. WANG ◽  
...  

SummarySaunders's Gull Larus saundersi is a breeding endemic of Common Seepweed Suaeda glauca habitats on the east coast of China and south-west coast of South Korea. Much of this habitat has been lost and degraded due to human land use and expansion of the introduced Smooth Cordgrass Spartina alterniflora. Yancheng National Nature Reserve (NNR) is one of three breeding and wintering areas in China. We used satellite images from 1992 to 2007 and visual interpretation combined with ground truthing to classify the land cover and quantify changes in land use and land cover (LULC) in areas of Yancheng NNR used by Saunders's Gull. The Common Seepweed habitat, in which this species nests, decreased in area by 79.1% (27,358 ha) over 15 years, predominantly as a result of conversion to aquaculture ponds (18,929 ha), and is now centred in the south-east of Yancheng NNR. The total population size of Saunders's Gull was maintained at over 900 individuals from 1999 to 2006 in Yancheng NNR, but was only 575 in 2007, and the number of breeding sites decreased from eight in 1992 and 1994 to a single site in 2000–2006 and two sites in 2007. From 1999 to 2007, the breeding population in the core area of Yancheng NNR accounted for 94.93% of the total population, and its nest-site spatial turnover rate was 0.84 ± 0.08 (n = 7 years), but it tended to decrease by about 40% in 2007 because of degradation of the Common Seepweed community. The conversion of Common Seepweed habitats to other habitat types and expansion of introduced Smooth Cordgrass were the major and direct reasons for the loss and degradation of breeding habitats of Saunders's Gull. Smooth Cordgrass habitats increased in area by 321.9% (11,057 ha) during this period and centred on the east, gradually occupying the mudflats, except the beach from Liangduo River to the south of Yancheng NNR, where potential breeding sites for the Saunders's Gull could be located. We discuss the implications of our results for the conservation this species and management of its habitats.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1541
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Anna Msigwa ◽  
Hans C. Komakech ◽  
Boud Verbeiren ◽  
...  

In SWAT and SWAT+ models, the variations in hydrological processes are represented by Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by a single growing cycle. However, agricultural land use, especially in African cultivated catchments, typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead of static land-cover maps and (2) linking these trajectories to agricultural management settings. This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle did not well represent vegetation dynamics. A better agreement was obtained after implementing seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI in default models. The SWAT+ model had higher flexibility in representing agricultural practices, using decision tables, and by being able to represent mixed cropping cultivations.


2013 ◽  
Vol 10 (2) ◽  
pp. 2591-2615 ◽  
Author(s):  
K. Leempoel ◽  
C. Bourgeois ◽  
J. Zhang ◽  
J. Wang ◽  
M. Chen ◽  
...  

Abstract. Mangrove forests, which are declining across the globe mainly because of human intervention, require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc.) to better implement conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (under the jurisdiction of Zhanjiang Mangrove National Nature Reserve – ZMNNR, P. R. China) were assessed through time using 1967 (Corona KH-4B), 2000 (Landsat ETM+), and 2009 (GeoEye-1) satellite imagery. An important decline in mangrove cover (−36%) was observed between 1967 and 2009 due to dike construction for agriculture (paddy) and aquaculture practices. Moreover, dike construction prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%), the ratio mangrove/aquaculture kept decreasing due to increased aquaculture at the expense of rice culture. In the land-use/cover map based on ground-truth data (5 m × 5 m plot-based tree measurements) (August–September, 2009) and spectral reflectance values (obtained from pansharpened GeoEye-1), both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum is identifiable at only 53% due to its mixed vegetation stands close to B. gymnorrhiza (classification accuracy: 85%). Sand proportion in the sediment showed significant differences (Kruskal-Wallis/ANOVA, P < 0.05) between the three mangrove classes (B. gymnorrhiza and small and tall A. corniculatum). Distribution of tall A. corniculatum on the convex side of creeks and small A.corniculatum on the concave side (with sand) show intriguing patterns of watercourse changes. Overall, the advantage of very high resolution satellite images like GeoEye-1 for mangrove spatial heterogeneity assessment and/or species-level discrimination is well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e.g. Kandelia obovata) at Gaoqiao. Despite the limitations such as geometric distortion and single band information, the 42-yr old Corona declassified images are invaluable for land-use/cover change detections when compared to recent satellite data sets.


Author(s):  
Alisa L. Gallant ◽  
Thomas R. Loveland ◽  
Terry L. Sohl ◽  
Darrell E. Napton

2015 ◽  
Author(s):  
Zezhong Zheng ◽  
Shijie Yu ◽  
Yong He ◽  
Wenqiang Guo ◽  
Wunian Yang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 1-16
Author(s):  
Vo Thanh Son ◽  
◽  
Luu The Anh ◽  
Dao Minh Truong ◽  
Trong Dai Ly ◽  
...  

Assessment of ecosystem services is vital for successful natural resource allocation; however, these have been less studied within Vietnam. This study estimated the ecosystem services value (ESV) and its change in Cham Chu nature reserve, Vietnam using a benefit transfer method. Ecosystem service values estimation and trend analyses were carried out based on land use and land cover datasets from 1986, 1998, 2007, and 2017, with their corresponding global value coefficients. The results revealed that the total value of ecosystem services in Cham Chu was approximately 64.4, 63.9, 60.7, and 63.4 million USD in 1986, 1998, 2007, and 2017, respectively. Changes have also occurred in the values of individual ecosystem service functions. From 1986 to 2017, ecosystem service functions showed significant decreases in gas regulation, pollination, biological control, water regulation, water supply, and food production of 62.9%, 51.2%, 44.4%, 24.7%, 23.1%, and 13.0%, respectively. We conclude that the loss of ESV is a result of ecological deterioration in the studied landscape, and we propose further research to examine future solutions and establish action strategies. In summary, the research approach methodology developed can be used by land managers and planners in Vietnam as a guideline to estimate the importance of ecosystem services in Vietnam.


Sign in / Sign up

Export Citation Format

Share Document