scholarly journals Spatial heterogeneity in mangroves assessed by GeoEye-1 satellite data: a case-study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), China

2013 ◽  
Vol 10 (2) ◽  
pp. 2591-2615 ◽  
Author(s):  
K. Leempoel ◽  
C. Bourgeois ◽  
J. Zhang ◽  
J. Wang ◽  
M. Chen ◽  
...  

Abstract. Mangrove forests, which are declining across the globe mainly because of human intervention, require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc.) to better implement conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (under the jurisdiction of Zhanjiang Mangrove National Nature Reserve – ZMNNR, P. R. China) were assessed through time using 1967 (Corona KH-4B), 2000 (Landsat ETM+), and 2009 (GeoEye-1) satellite imagery. An important decline in mangrove cover (−36%) was observed between 1967 and 2009 due to dike construction for agriculture (paddy) and aquaculture practices. Moreover, dike construction prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%), the ratio mangrove/aquaculture kept decreasing due to increased aquaculture at the expense of rice culture. In the land-use/cover map based on ground-truth data (5 m × 5 m plot-based tree measurements) (August–September, 2009) and spectral reflectance values (obtained from pansharpened GeoEye-1), both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum is identifiable at only 53% due to its mixed vegetation stands close to B. gymnorrhiza (classification accuracy: 85%). Sand proportion in the sediment showed significant differences (Kruskal-Wallis/ANOVA, P < 0.05) between the three mangrove classes (B. gymnorrhiza and small and tall A. corniculatum). Distribution of tall A. corniculatum on the convex side of creeks and small A.corniculatum on the concave side (with sand) show intriguing patterns of watercourse changes. Overall, the advantage of very high resolution satellite images like GeoEye-1 for mangrove spatial heterogeneity assessment and/or species-level discrimination is well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e.g. Kandelia obovata) at Gaoqiao. Despite the limitations such as geometric distortion and single band information, the 42-yr old Corona declassified images are invaluable for land-use/cover change detections when compared to recent satellite data sets.

2013 ◽  
Vol 10 (8) ◽  
pp. 5681-5689 ◽  
Author(s):  
K. Leempoel ◽  
B. Satyaranayana ◽  
C. Bourgeois ◽  
J. Zhang ◽  
M. Chen ◽  
...  

Abstract. Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc.) to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China) were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively). Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36%) was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%), the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements) (August–September, 2009) as well as spectral reflectance values (obtained from pansharpened GeoEye-1), both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%). In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m) for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e.g. Kandelia obovata) at Gaoqiao. Despite limitations such as geometric distortion and single panchromatic band, the 42 yr old Corona declassified images are invaluable for land-use/cover change detections when compared to recent satellite data sets.


2012 ◽  
Vol 32 (1) ◽  
pp. 207-214
Author(s):  
刘璐 LIU Lu ◽  
宋同清 SONG Tongqing ◽  
彭晚霞 PENG Wanxia ◽  
王克林 WANG Kelin ◽  
杜虎 DU Hu ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 927 ◽  
Author(s):  
Yu Tsai ◽  
Douglas Stow ◽  
Hsiang Chen ◽  
Rebecca Lewison ◽  
Li An ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2781
Author(s):  
Juan Durango-Cordero ◽  
Behara Satyanarayana ◽  
Jonathan Cheung-Wai Chan ◽  
Jan Bogaert ◽  
Farid Dahdouh-Guebas

The present research developed a novel methodological framework to differentiate natural mangrove stands (i.e., original), from stands which were planted and stands naturally established after interaction between planted and non-planted stands (e.g., through pollination, i.e., non-original). Ground-truth and remote sensing data were collected for Zhanjiang Mangrove National Nature Reserve (ZMNNR) in P.R. China. First, satellite images of Corona (1967) and GeoEye-1 (2009) were overlaid to identify original (1967) and non-original (2009) mangrove stands. Second, in both stands a total of 75 in situ plots (25 m2) were measured for ground-truthing of tree structural parameters including height, density, basal area and Complexity Index (CI). From temporal satellite data, we identify 236.12 ha of original mangrove and 567.88 ha of non-original mangrove in the reserve. Averaged measurements of the original mangrove stands, i.e., stem density (1164 nos. 0.1 ha−1), basal area (90.3 m2 0.1 ha−1) and CI (100.59), indicated that they were in a state of maturity and less disturbed compared to the non-original mangroves (density, 1241 nos. 0.1 ha−1; basal area, 4.92 m2 0.1 ha−1 and CI, 55.65). The Kruskal–Wallis test showed significant differentiation between the original and non-original mangrove tree structural parameters: Kandelia obovata’s density, X2 = 34.78, d.f. = 1, p = 0.001; basal area, X2 = 108.15, d.f. = 1, p = 0.001; Rizhopora stylosa’s density, X2 = 64.03, d.f. = 1, p = 0.001; basal area, X2 = 117.96, d.f. = 1, p = 0.001. The latter is also evident from the clustering plots generated from the Principal Component Analysis (PCA). Vegetation dynamics at the ZMNNR also enabled us to compare the species composition and distribution patterns with other Indo-West Pacific regions. Overall, the present study not only highlights the advantage of >50 years old satellite data but also provide a benchmark for future ecological research, conservation and management of the ZMNNR.


2020 ◽  
Author(s):  
Zhihao Huang ◽  
Yangjing Peng ◽  
Ruifeng Wang ◽  
Guofa Cui ◽  
Nachuan Lu ◽  
...  

Abstract Background The rapid assessment of the effectiveness of landscape protection in nature reserves is of great significance for the scientific formulation of protection and management countermeasures for nature reserves and is also an urgent problem to be solved for the construction and management of nature reserves in China. Using high-resolution remote sensing image data, this study analyzes the landscape dynamics in the Liancheng National Nature Reserve (LNNR) and their driving factors since the reserve’s promotion to the national level in 2005, and proposes a comprehensive evaluation method for the effectiveness of landscape protection in protected areas based on the Landscape Transfer Index (LTI), Protected Landscape Integrity Index (PLII), and Interfered Landscape Sprawl Index (ILSI). Results Between 2006 and 2019, the area of protected landscape—namely woodland, grassland, and water—in the LNNR decreased, while the area of interfered landscape such as residential land, industrial and mining land, and water conservancy facility land increased. The LTI was − 0.14, and among the driving factors, the development of industry and mining, land use by indigenous inhabitants, and the development of the transport industry made the highest contribution to the landscape transfer tendency, being respectively 34.79%, 28.98%, and 17.30%. The PLII decreased from 82.7 to 68.7 and the ILSI increased from 26.61 to 26.68. Conclusion The effectiveness of landscape protection in the LNNR is low. Between 2006 and 2019, the overall quality of the landscape slightly decreased, the spatial pattern of the protected landscape became more fragmented, and the degree of human interference in the landscape increased; however, the scope of influence of human interference did not change significantly. These changes were mainly due to industrial and mining exploitation, land use by indigenous inhabitants, and road construction. However, despite the insignificant nature of these changes, they still require attention and timely remedial measures. The methodology proposed in this study may be applicable to the rapid assessment of the effectiveness of landscape conservation in various types of nature conservation sites around the world.


2019 ◽  
Vol 111 ◽  
pp. 102077 ◽  
Author(s):  
Yu Hsin Tsai ◽  
Douglas Stow ◽  
Li An ◽  
Hsiang Ling Chen ◽  
Rebecca Lewison ◽  
...  

2010 ◽  
Vol 20 (1) ◽  
pp. 13-24 ◽  
Author(s):  
H. X. JIANG ◽  
Y. Q. HOU ◽  
G. Z. CHU ◽  
F. W. QIAN ◽  
H. WANG ◽  
...  

SummarySaunders's Gull Larus saundersi is a breeding endemic of Common Seepweed Suaeda glauca habitats on the east coast of China and south-west coast of South Korea. Much of this habitat has been lost and degraded due to human land use and expansion of the introduced Smooth Cordgrass Spartina alterniflora. Yancheng National Nature Reserve (NNR) is one of three breeding and wintering areas in China. We used satellite images from 1992 to 2007 and visual interpretation combined with ground truthing to classify the land cover and quantify changes in land use and land cover (LULC) in areas of Yancheng NNR used by Saunders's Gull. The Common Seepweed habitat, in which this species nests, decreased in area by 79.1% (27,358 ha) over 15 years, predominantly as a result of conversion to aquaculture ponds (18,929 ha), and is now centred in the south-east of Yancheng NNR. The total population size of Saunders's Gull was maintained at over 900 individuals from 1999 to 2006 in Yancheng NNR, but was only 575 in 2007, and the number of breeding sites decreased from eight in 1992 and 1994 to a single site in 2000–2006 and two sites in 2007. From 1999 to 2007, the breeding population in the core area of Yancheng NNR accounted for 94.93% of the total population, and its nest-site spatial turnover rate was 0.84 ± 0.08 (n = 7 years), but it tended to decrease by about 40% in 2007 because of degradation of the Common Seepweed community. The conversion of Common Seepweed habitats to other habitat types and expansion of introduced Smooth Cordgrass were the major and direct reasons for the loss and degradation of breeding habitats of Saunders's Gull. Smooth Cordgrass habitats increased in area by 321.9% (11,057 ha) during this period and centred on the east, gradually occupying the mudflats, except the beach from Liangduo River to the south of Yancheng NNR, where potential breeding sites for the Saunders's Gull could be located. We discuss the implications of our results for the conservation this species and management of its habitats.


Sign in / Sign up

Export Citation Format

Share Document