scholarly journals Stochastically perturbed vector-borne disease models with direct transmission

2012 ◽  
Vol 36 (11) ◽  
pp. 5214-5228 ◽  
Author(s):  
Miljana Jovanović ◽  
Marija Krstić
2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Nurul Aida Nordin ◽  
Rohanin Ahmad ◽  
Rashidah Ahmad

This paper introduces the usage of three controls as a way to reduce the occurrence of vector-borne disease. The governing equation of the dynamical system used in this paper describes both direct and indirect transmission mode of vector-borne disease. This means that the disease can be transmitted in two different ways. First, it can be transmitted through mosquito bites and the other is through human blood transfusion. The three controls that are incorporated in the dynamical system include a measurement of basic practice for blood donation procedure, self-prevention effort and vector control strategy by health authority. The optimality system of the three controls is characterized using optimal control theory and the existence and uniqueness of the optimal control are established. Then, the effect of the incorporation of the three controls is investigated by performing numerical simulation. 


2020 ◽  
Vol 30 (06) ◽  
pp. 2050083
Author(s):  
Sk Shahid Nadim ◽  
Indrajit Ghosh ◽  
Joydev Chattopadhyay

In this paper, we study the dynamics of a vector-borne disease model with two transmission paths: direct transmission through contact and indirect transmission through vector. The direct transmission is considered to be a nonmonotone incidence function to describe the psychological effect of some severe diseases among the population when the number of infected hosts is large and/or the disease possesses high case fatality rate. The system has a disease-free equilibrium which is locally asymptotically stable when the basic reproduction number ([Formula: see text]) is less than unity and may have up to four endemic equilibria. Analytical expression representing the epidemic growth rate is obtained for the system. Sensitivity of the two transmission pathways were compared with respect to the epidemic growth rate. We numerically find that the direct transmission coefficient is more sensitive than the indirect transmission coefficient with respect to [Formula: see text] and the epidemic growth rate. Local stability of endemic equilibrium is studied. Further, the global asymptotic stability of the endemic equilibrium is proved using Li and Muldowney geometric approach. The explicit condition for which the system undergoes backward bifurcation is obtained. The basic model also exhibits the hysteresis phenomenon which implies diseases will persist even when [Formula: see text] although the system undergoes a forward bifurcation and this phenomenon is rarely observed in disease models. Consequently, our analysis suggests that the diseases with multiple transmission routes exhibit bistable dynamics. However, efficient application of temporary control in bistable regions will curb the disease to lower endemicity. Additionally, numerical simulations reveal that the equilibrium level of infected hosts decreases as psychological effect increases.


2015 ◽  
Vol 93 (8) ◽  
pp. 1405-1422 ◽  
Author(s):  
Filipe Rocha ◽  
Luís Mateus ◽  
Urszula Skwara ◽  
Maíra Aguiar ◽  
Nico Stollenwerk

2018 ◽  
Author(s):  
Sk Shahid Nadim ◽  
Indrajit Ghosh ◽  
Joydev Chattopadhyay

In this paper, we study the dynamics of a vector-borne disease model with two transmission paths: direct transmission through contact and indirect transmission through vector. The direct transmission is considered to be a non-monotone incidence function to describe the psychological effect of some severe diseases among the population when the number of infected hosts is large and/or the disease possesses high case fatality rate. The system has a disease-free equilibrium which is locally asymptomatically stable when the basic reproduction number (R_0) is less than unity and may have up to four endemic equilibria. Analytical expression representing the epidemic growth rate is obtained for the system. Sensitivity of the two transmission pathways were compared with respect to the epidemic growth rate. We numerically find that the direct transmission coefficient is more sensitive than the indirect transmission coefficient with respect to R_0 and the epidemic growth rate. Local stability of endemic equilibria is studied. Further, the global asymptotic stability of the endemic equilibrium is proved using Li and Muldowney geometric approach. The explicit condition for which the system undergoes backward bifurcation is obtained. The basic model also exhibits the hysteresis phenomenon which implies diseases will persist even when R_0<1 although the system undergoes a forward bifurcation and this phenomenon is rarely observed in disease models. Consequently, our analysis suggests that the diseases with multiple transmission routes exhibit bi-stable dynamics. However, efficient application of temporary control in bi-stable regions will curb the disease to lower endemicity. In addition, increase in transmission heterogeneity will increase the chance of disease eradication.


2010 ◽  
Author(s):  
Tomás Francisco Yago Vincente ◽  
Brian Mullen ◽  
Thomas N. Mather ◽  
Jean-Yves Herve

2018 ◽  
Vol 4 (4) ◽  
pp. 513
Author(s):  
Rakhshan .

Mosquitoes are vectors of many pathogens which causes serious human diseases like Malaria, Filariasis, Japanese encephalitis, Dengue fever, Chikungunya, Yellow fever and Zika virus which constitute a major public health problem globally. Mosquito borne diseases cause high level of economic impact all over the world and result in millions of death every year. They infect around 700,000,000 people annually worldwide and 40,000,000 only in India. The continuous use of synthetic pesticides to control vector mosquitoes has caused physiological resistance, toxic effect on human health, environmental pollution and addition to these, its adverse effects can be observed on non-target organisms. Synthetic chemical pesticides have been proved to be effective, but overall in last 5 decades indiscriminate use of synthetic pesticides against vector borne disease control have originated several ecological issues due to their residual accumulation and development of resistance in target vectors and their chronic effects.


Sign in / Sign up

Export Citation Format

Share Document