scholarly journals Genetic algorithm based wireless vibration control of multiple modal for a beam by using photostrictive actuators

2014 ◽  
Vol 38 (2) ◽  
pp. 437-450 ◽  
Author(s):  
Zheng Shijie ◽  
Lian Jingjing ◽  
Wang Hongtao
Author(s):  
Sourav Kundu ◽  
Kentaro Kamagata ◽  
Shigeru Sugino ◽  
Takeshi Minowa ◽  
Kazuto Seto

Abstract A Genetic Algorithm (GA) based approach for solution of optimal control design of flexible structures is presented in this paper. The method for modeling flexible structures with distributed parameters as reduced-order models with lumped parameters, which has been developed previously, is employed. Due to some restrictions on controller design it is necessary to make a reduced-order model of the structure. Once the model is established the design of flexible structures is considered as a feedback search procedure where a new solution is assigned some fitness value for the GA and the algorithm iterates till some satisfactory design solution is achieved. We propose a pole assignment method to determine the evaluation (fitness) function to be used by the GA to find optimal damping ratios in passive elements. This paper demonstrates the first results of a genetic algorithm approach to solution of the vibration control problem for practical control applications to flexible tower-like structures.


2017 ◽  
Vol 28 (15) ◽  
pp. 2074-2081 ◽  
Author(s):  
Chunyou Zhang ◽  
Lihua Wang ◽  
Xiaoqiang Wu ◽  
Weijin Gao

Due to widespread applications of a large number of flexible structures, to obtain the best dynamic control performance of a system, optimal locations of the actuators and sensors are necessary to be determined. This article proposes a novel optimal criterion for the actuators or sensors ensuring good controllability or observability of a structure, and also considering the remaining modes to control the spillover effect. Based on the proposed optimization criteria, a non-linear integer programming genetic algorithm is employed to achieve the optimal configurations. Active vibration control is investigated for a cantilever plate with the actuators in optimal positions to suppress the specified modes utilizing linear quadratic regulator controller. Several simulation results validate the efficiency and feasibility of the proposed optimal criteria.


Sign in / Sign up

Export Citation Format

Share Document