Influence of Surface and Couple Stresses on Response of Elastic Substrate under Tilted Flat Indenter

Author(s):  
Toan Minh Le ◽  
Wipavee Wongviboonsin ◽  
Jintara Lawongkerd ◽  
Tinh Quoc Bui ◽  
Jaroon Rungamornrat

2021 ◽  
Vol 69 ◽  
pp. 271-284
Author(s):  
Muhammad Kahshan ◽  
Dianchen Lu ◽  
A. Khan ◽  
Naeem Faraz




2012 ◽  
Vol 85 (3) ◽  
pp. 649-654 ◽  
Author(s):  
M. Sajid ◽  
N. Ali ◽  
Z. Abbas ◽  
T. Javed ◽  
M. Imran


1962 ◽  
Vol 11 (1) ◽  
pp. 385-414 ◽  
Author(s):  
R. A. Toupin




Author(s):  
Chung Yuen Hui ◽  
Zezhou Liu ◽  
Anand Jagota

For a broad class of soft materials their surface stress can strongly influence mechanical behaviour. For example, a line force applied to the surface of an elastic substrate is locally supported by surface stress over an elasto-capillary length l c (surface stress/elastic modulus). Surface stress regularizes the otherwise highly singular stress and strain fields. However, surface such as lipid bilayer interfaces can also resist deformation by bending. This has not been studied either by experiments or theories. We analyse a theoretical model of the response of a half-space to a line force when the surface carries both a stress and resistance to bending. We find that surface bending further regularizes the singular fields. The local stress field near the line load can be separated into three regions. Region 1 occupies distances from the line load smaller than an elasto-capillary bending length l b (bending stiffness/elastic modulus to the 1/3 power) where surface bending dominates and the elastic stress and strains are continuous. Region 2 occupies intermediate distances between l b and l c   ( > l b ) where surface stress dominates. At distances larger than l c we retrieve the classical elasticity solution. The size of region 2 depends on κ = l c / l b and vanishes for small l c .



1977 ◽  
Vol 13 (11) ◽  
pp. 1103-1122 ◽  
Author(s):  
C. Atkinson ◽  
F.G. Leppington
Keyword(s):  


Author(s):  
R. D. Mindlin ◽  
H. F. Tiersten


Sign in / Sign up

Export Citation Format

Share Document