Fractional-order Boubaker wavelets method for solving fractional Riccati differential equations

2021 ◽  
Vol 168 ◽  
pp. 221-234
Author(s):  
Kobra Rabiei ◽  
Mohsen Razzaghi
2019 ◽  
Vol 28 (14) ◽  
pp. 1950247 ◽  
Author(s):  
Sadiye Nergis Tural-Polat

In this paper, we derive the numerical solutions of the various fractional-order Riccati type differential equations using the third-kind Chebyshev wavelet operational matrix of fractional order integration (C3WOMFI) method. The operational matrix of fractional order integration method converts the fractional differential equations to a system of algebraic equations. The third-kind Chebyshev wavelet method provides sparse coefficient matrices, therefore the computational load involved for this method is not as severe and also the resulting method is faster. The numerical solutions agree with the exact solutions for non-fractional orders, and also the solutions for the fractional orders approach those of the integer orders as the fractional order coefficient [Formula: see text] approaches to 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Balaji

A Legendre wavelet operational matrix method (LWM) is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Sign in / Sign up

Export Citation Format

Share Document