Third-Kind Chebyshev Wavelet Method for the Solution of Fractional Order Riccati Differential Equations

2019 ◽  
Vol 28 (14) ◽  
pp. 1950247 ◽  
Author(s):  
Sadiye Nergis Tural-Polat

In this paper, we derive the numerical solutions of the various fractional-order Riccati type differential equations using the third-kind Chebyshev wavelet operational matrix of fractional order integration (C3WOMFI) method. The operational matrix of fractional order integration method converts the fractional differential equations to a system of algebraic equations. The third-kind Chebyshev wavelet method provides sparse coefficient matrices, therefore the computational load involved for this method is not as severe and also the resulting method is faster. The numerical solutions agree with the exact solutions for non-fractional orders, and also the solutions for the fractional orders approach those of the integer orders as the fractional order coefficient [Formula: see text] approaches to 1.

Author(s):  
P. K. Sahu ◽  
S. Saha Ray

In this paper, Chebyshev wavelet method (CWM) has been applied to solve the second-order singular differential equations of Lane–Emden type. Firstly, the singular differential equation has been converted to Volterra integro-differential equation and then solved by the CWM. The properties of Chebyshev wavelets were first presented. The properties of Chebyshev wavelets via Gauss–Legendre rule were used to reduce the integral equations to a system of algebraic equations which can be solved numerically by Newton’s method. Convergence analysis of CWM has been discussed. Illustrative examples have been provided to demonstrate the validity and applicability of the present method.


Author(s):  
S.C. Shiralashetti ◽  
A.B. Deshi

In this paper, numerical solutions of Riccati and fractional Riccati differential equations are obtained by the Haar wavelet collocation method. An operational matrix of integration based on the Haar wavelet is established, and the procedure for applying the matrix to solve these equations. The fundamental idea of Haar wavelet method is to convert the proposed differential equations into a group of non-linear algebraic equations. The accuracy of approximate solution can be further improved by increasing the level of resolution and an error analysis is computed. The examples are given to demonstrate the fast and flexibility of the method. The results obtained are in good agreement with the exact in comparison with existing ones and it is shown that the technique introduced here is robust, easy to apply and is not only enough accurate but also quite stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Balaji

A Legendre wavelet operational matrix method (LWM) is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.


2021 ◽  
Vol 5 (3) ◽  
pp. 70
Author(s):  
Esmail Bargamadi ◽  
Leila Torkzadeh ◽  
Kazem Nouri ◽  
Amin Jajarmi

In this paper, by means of the second Chebyshev wavelet and its operational matrix, we solve a system of fractional-order Volterra–Fredholm integro-differential equations with weakly singular kernels. We estimate the functions by using the wavelet basis and then obtain the approximate solutions from the algebraic system corresponding to the main system. Moreover, the implementation of our scheme is presented, and the error bounds of approximations are analyzed. Finally, we evaluate the efficiency of the method through a numerical example.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 96 ◽  
Author(s):  
İbrahim Avcı ◽  
Nazim I. Mahmudov

In this article, we propose a numerical method based on the fractional Taylor vector for solving multi-term fractional differential equations. The main idea of this method is to reduce the given problems to a set of algebraic equations by utilizing the fractional Taylor operational matrix of fractional integration. This system of equations can be solved efficiently. Some numerical examples are given to demonstrate the accuracy and applicability. The results show that the presented method is efficient and applicable.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mingxu Yi ◽  
Kangwen Sun ◽  
Jun Huang ◽  
Lifeng Wang

A numerical method based on the CAS wavelets is presented for the fractional integrodifferential equations of Bratu type. The CAS wavelets operational matrix of fractional order integration is derived. A truncated CAS wavelets series together with this operational matrix is utilized to reduce the fractional integrodifferential equations to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited2k(2M+1). The convergence and error estimation of CAS wavelets are also given. Two examples are included to demonstrate the validity and applicability of the approach.


2018 ◽  
Vol 36 (4) ◽  
pp. 33-54 ◽  
Author(s):  
Kourosh Parand ◽  
Mehdi Delkhosh

In this paper, a new approximate method for solving of systems of nonlinear Volterra integro-differential equations of arbitrary (integer and fractional) order is introduced. For this purpose, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) based on the classical Chebyshev polynomials of the first kind has been introduced that can be used to obtain the solution of the integro-differential equations (IDEs). Also, we construct the fractional derivative operational matrix of order $\alpha$ in the Caputo's definition for GFCFs. This method reduced a system of IDEs by collocation method into a system of algebraic equations. Some examples to illustrate the simplicity and the effectiveness of the propose method have been presented.


Sign in / Sign up

Export Citation Format

Share Document