Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients

2019 ◽  
Vol 523 ◽  
pp. 1130-1149 ◽  
Author(s):  
Harendra Singh ◽  
H.M. Srivastava
Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244027
Author(s):  
Sidra Saleem ◽  
Malik Zawwar Hussain ◽  
Imran Aziz

The approximate solution of KdV-type partial differential equations of order seven is presented. The algorithm based on one-dimensional Haar wavelet collocation method is adapted for this purpose. One-dimensional Haar wavelet collocation method is verified on Lax equation, Sawada-Kotera-Ito equation and Kaup-Kuperschmidt equation of order seven. The approximated results are displayed by means of tables (consisting point wise errors and maximum absolute errors) to measure the accuracy and proficiency of the scheme in a few number of grid points. Moreover, the approximate solutions and exact solutions are compared graphically, that represent a close match between the two solutions and confirm the adequate behavior of the proposed method.


Fractals ◽  
2021 ◽  
Author(s):  
LAIQ ZADA ◽  
RASHID NAWAZ ◽  
MOHAMMAD A. ALQUDAH ◽  
KOTTAKKARAN SOOPPY NISAR

In the present paper, the optimal auxiliary function method (OAFM) has been extended for the first time to fractional-order partial differential equations (FPDEs) with convergence analysis. To find the accuracy of the OAFM, we consider the fractional-order KDV-Burger and fifth-order Sawada–Kotera equations as a test example. The proposed technique has auxiliary functions and convergence control parameters, which accelerate the convergence of the method. The other advantage of this method is that there is no need for a small or large parameter assumption, and it gives an approximate solution after only one iteration. Further, the obtained results have been compared with the exact solution through different graphs and tables, which shows that the proposed method is very effective and easy to implement for different FPDEs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650031 ◽  
Author(s):  
Şuayip Yüzbaşı

In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.


Sign in / Sign up

Export Citation Format

Share Document